The rewrite relation of the following TRS is considered.
| minus(x,0) | → | x | (1) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| quot(0,s(y)) | → | 0 | (3) | 
| quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (4) | 
| plus(0,y) | → | y | (5) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| app(nil,k) | → | k | (8) | 
| app(l,nil) | → | l | (9) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus#(s(x),y) | → | plus#(x,y) | (14) | 
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) | 
| minus#(minus(x,y),z) | → | plus#(y,z) | (16) | 
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) | 
| quot#(s(x),s(y)) | → | minus#(x,y) | (18) | 
| sum#(cons(x,cons(y,l))) | → | plus#(x,y) | (19) | 
| app#(cons(x,l),k) | → | app#(l,k) | (20) | 
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(cons(x,cons(y,k))) | (21) | 
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) | 
| minus#(s(x),s(y)) | → | minus#(x,y) | (23) | 
| minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (24) | 
| sum#(app(l,cons(x,cons(y,k)))) | → | app#(l,sum(cons(x,cons(y,k)))) | (25) | 
The dependency pairs are split into 6 components.
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) | 
| [s(x1)] | = | x1 + 1 | 
| [minus(x1, x2)] | = | 0 | 
| [plus#(x1, x2)] | = | 0 | 
| [sum(x1)] | = | 78937 | 
| [0] | = | 34723 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 39468 | 
| [app#(x1, x2)] | = | 0 | 
| [minus#(x1, x2)] | = | 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 17651 | 
| [cons(x1, x2)] | = | x2 + 39469 | 
| [quot#(x1, x2)] | = | 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 18816 | 
| app(nil,k) | → | k | (8) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| sum#(app(l,cons(x,cons(y,k)))) | → | sum#(app(l,sum(cons(x,cons(y,k))))) | (22) | 
The dependency pairs are split into 0 components.
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) | 
| [s(x1)] | = | x1 + 2 | 
| [minus(x1, x2)] | = | x1 + 1 | 
| [plus#(x1, x2)] | = | 0 | 
| [sum(x1)] | = | 78937 | 
| [0] | = | 34723 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 39468 | 
| [app#(x1, x2)] | = | 0 | 
| [minus#(x1, x2)] | = | 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 46823 | 
| [cons(x1, x2)] | = | x2 + 1 | 
| [quot#(x1, x2)] | = | x1 + 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 24867 | 
| app(nil,k) | → | k | (8) | 
| minus(x,0) | → | x | (1) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| quot#(s(x),s(y)) | → | quot#(minus(x,y),s(y)) | (17) | 
The dependency pairs are split into 0 components.
| minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (24) | 
| minus#(s(x),s(y)) | → | minus#(x,y) | (23) | 
| [s(x1)] | = | x1 + 1 | 
| [minus(x1, x2)] | = | x1 + x2 + 46824 | 
| [plus#(x1, x2)] | = | 0 | 
| [sum(x1)] | = | 78937 | 
| [0] | = | 0 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 39468 | 
| [app#(x1, x2)] | = | 0 | 
| [minus#(x1, x2)] | = | x1 + x2 + 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 46823 | 
| [cons(x1, x2)] | = | x2 + 1 | 
| [quot#(x1, x2)] | = | x1 + 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 24867 | 
| app(nil,k) | → | k | (8) | 
| minus(x,0) | → | x | (1) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| minus#(minus(x,y),z) | → | minus#(x,plus(y,z)) | (24) | 
| minus#(s(x),s(y)) | → | minus#(x,y) | (23) | 
The dependency pairs are split into 0 components.
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) | 
| [s(x1)] | = | x1 + 1 | 
| [minus(x1, x2)] | = | x1 + x2 + 46824 | 
| [plus#(x1, x2)] | = | 0 | 
| [sum(x1)] | = | 59250 | 
| [0] | = | 0 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 19781 | 
| [app#(x1, x2)] | = | 0 | 
| [minus#(x1, x2)] | = | x2 + 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 46823 | 
| [cons(x1, x2)] | = | x2 + 1 | 
| [quot#(x1, x2)] | = | x1 + 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 24867 | 
| app(nil,k) | → | k | (8) | 
| minus(x,0) | → | x | (1) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| sum#(cons(x,cons(y,l))) | → | sum#(cons(plus(x,y),l)) | (15) | 
The dependency pairs are split into 0 components.
| app#(cons(x,l),k) | → | app#(l,k) | (20) | 
| [s(x1)] | = | x1 + 1 | 
| [minus(x1, x2)] | = | x1 + x2 + 46824 | 
| [plus#(x1, x2)] | = | 0 | 
| [sum(x1)] | = | 59250 | 
| [0] | = | 0 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 19781 | 
| [app#(x1, x2)] | = | x1 + 0 | 
| [minus#(x1, x2)] | = | x2 + 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 1 | 
| [cons(x1, x2)] | = | x2 + 1 | 
| [quot#(x1, x2)] | = | x1 + 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 1 | 
| app(nil,k) | → | k | (8) | 
| minus(x,0) | → | x | (1) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| app#(cons(x,l),k) | → | app#(l,k) | (20) | 
The dependency pairs are split into 0 components.
| plus#(s(x),y) | → | plus#(x,y) | (14) | 
| [s(x1)] | = | x1 + 1 | 
| [minus(x1, x2)] | = | x1 + x2 + 46824 | 
| [plus#(x1, x2)] | = | x1 + 0 | 
| [sum(x1)] | = | 2 | 
| [0] | = | 0 | 
| [quot(x1, x2)] | = | 0 | 
| [nil] | = | 1 | 
| [app#(x1, x2)] | = | 0 | 
| [minus#(x1, x2)] | = | x2 + 0 | 
| [plus(x1, x2)] | = | x1 + x2 + 1 | 
| [cons(x1, x2)] | = | x2 + 1 | 
| [quot#(x1, x2)] | = | x1 + 0 | 
| [sum#(x1)] | = | x1 + 0 | 
| [app(x1, x2)] | = | x1 + x2 + 34725 | 
| app(nil,k) | → | k | (8) | 
| minus(x,0) | → | x | (1) | 
| plus(0,y) | → | y | (5) | 
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (10) | 
| minus(minus(x,y),z) | → | minus(x,plus(y,z)) | (7) | 
| sum(cons(x,cons(y,l))) | → | sum(cons(plus(x,y),l)) | (12) | 
| sum(cons(x,nil)) | → | cons(x,nil) | (11) | 
| app(l,nil) | → | l | (9) | 
| sum(app(l,cons(x,cons(y,k)))) | → | sum(app(l,sum(cons(x,cons(y,k))))) | (13) | 
| plus(s(x),y) | → | s(plus(x,y)) | (6) | 
| minus(s(x),s(y)) | → | minus(x,y) | (2) | 
| plus#(s(x),y) | → | plus#(x,y) | (14) | 
The dependency pairs are split into 0 components.