The rewrite relation of the following TRS is considered.
| sum(cons(s(n),x),cons(m,y)) | → | sum(cons(n,x),cons(s(m),y)) | (1) |
| sum(cons(0,x),y) | → | sum(x,y) | (2) |
| sum(nil,y) | → | y | (3) |
| weight(cons(n,cons(m,x))) | → | weight(sum(cons(n,cons(m,x)),cons(0,x))) | (4) |
| weight(cons(n,nil)) | → | n | (5) |
| sum#(cons(s(n),x),cons(m,y)) | → | sum#(cons(n,x),cons(s(m),y)) | (6) |
| weight#(cons(n,cons(m,x))) | → | weight#(sum(cons(n,cons(m,x)),cons(0,x))) | (7) |
| sum#(cons(0,x),y) | → | sum#(x,y) | (8) |
| weight#(cons(n,cons(m,x))) | → | sum#(cons(n,cons(m,x)),cons(0,x)) | (9) |
The dependency pairs are split into 2 components.
| weight#(cons(n,cons(m,x))) | → | weight#(sum(cons(n,cons(m,x)),cons(0,x))) | (7) |
| [s(x1)] | = | 1 |
| [weight#(x1)] | = | x1 + 0 |
| [sum(x1, x2)] | = | x2 + 0 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [weight(x1)] | = | 0 |
| [cons(x1, x2)] | = | x2 + 1 |
| [sum#(x1, x2)] | = | 0 |
| sum(cons(s(n),x),cons(m,y)) | → | sum(cons(n,x),cons(s(m),y)) | (1) |
| sum(nil,y) | → | y | (3) |
| sum(cons(0,x),y) | → | sum(x,y) | (2) |
| weight#(cons(n,cons(m,x))) | → | weight#(sum(cons(n,cons(m,x)),cons(0,x))) | (7) |
The dependency pairs are split into 0 components.
| sum#(cons(0,x),y) | → | sum#(x,y) | (8) |
| sum#(cons(s(n),x),cons(m,y)) | → | sum#(cons(n,x),cons(s(m),y)) | (6) |
| [s(x1)] | = | 1 |
| [weight#(x1)] | = | x1 + 0 |
| [sum(x1, x2)] | = | x2 + 0 |
| [0] | = | 1 |
| [nil] | = | 1 |
| [weight(x1)] | = | 0 |
| [cons(x1, x2)] | = | x2 + 1 |
| [sum#(x1, x2)] | = | x1 + 0 |
| sum(cons(s(n),x),cons(m,y)) | → | sum(cons(n,x),cons(s(m),y)) | (1) |
| sum(nil,y) | → | y | (3) |
| sum(cons(0,x),y) | → | sum(x,y) | (2) |
| sum#(cons(0,x),y) | → | sum#(x,y) | (8) |
The dependency pairs are split into 1 component.
| sum#(cons(s(n),x),cons(m,y)) | → | sum#(cons(n,x),cons(s(m),y)) | (6) |
| [s(x1)] | = | x1 + 1 |
| [weight#(x1)] | = | x1 + 0 |
| [sum(x1, x2)] | = | x1 + x2 + 0 |
| [0] | = | 44022 |
| [nil] | = | 21680 |
| [weight(x1)] | = | 0 |
| [cons(x1, x2)] | = | x1 + x2 + 282 |
| [sum#(x1, x2)] | = | x1 + 0 |
| sum(cons(s(n),x),cons(m,y)) | → | sum(cons(n,x),cons(s(m),y)) | (1) |
| sum(nil,y) | → | y | (3) |
| sum(cons(0,x),y) | → | sum(x,y) | (2) |
| sum#(cons(s(n),x),cons(m,y)) | → | sum#(cons(n,x),cons(s(m),y)) | (6) |
The dependency pairs are split into 0 components.