MAYBE

We are left with following problem, upon which TcT provides the
certificate MAYBE.

Strict Trs:
  { minus(x, 0()) -> x
  , minus(minus(x, y), z) -> minus(x, plus(y, z))
  , minus(s(x), s(y)) -> minus(x, y)
  , quot(0(), s(y)) -> 0()
  , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
  , plus(0(), y) -> y
  , plus(s(x), y) -> s(plus(x, y))
  , app(l, nil()) -> l
  , app(nil(), k) -> k
  , app(cons(x, l), k) -> cons(x, app(l, k))
  , sum(app(l, cons(x, cons(y, k)))) ->
    sum(app(l, sum(cons(x, cons(y, k)))))
  , sum(cons(x, nil())) -> cons(x, nil())
  , sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) }
Obligation:
  runtime complexity
Answer:
  MAYBE

None of the processors succeeded.

Details of failed attempt(s):
-----------------------------
1) 'WithProblem (timeout of 60 seconds)' failed due to the
   following reason:
   
   Computation stopped due to timeout after 60.0 seconds.

2) 'Best' failed due to the following reason:
   
   None of the processors succeeded.
   
   Details of failed attempt(s):
   -----------------------------
   1) 'WithProblem (timeout of 30 seconds) (timeout of 60 seconds)'
      failed due to the following reason:
      
      Computation stopped due to timeout after 30.0 seconds.
   
   2) 'Best' failed due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'bsearch-popstar (timeout of 60 seconds)' failed due to the
         following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
      2) 'Polynomial Path Order (PS) (timeout of 60 seconds)' failed due
         to the following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
   
   3) 'Fastest (timeout of 5 seconds) (timeout of 60 seconds)' failed
      due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Bounds with perSymbol-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
      2) 'Bounds with minimal-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
   

3) 'Innermost Weak Dependency Pairs (timeout of 60 seconds)' failed
   due to the following reason:
   
   We add the following weak dependency pairs:
   
   Strict DPs:
     { minus^#(x, 0()) -> c_1(x)
     , minus^#(minus(x, y), z) -> c_2(minus^#(x, plus(y, z)))
     , minus^#(s(x), s(y)) -> c_3(minus^#(x, y))
     , quot^#(0(), s(y)) -> c_4()
     , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))
     , plus^#(0(), y) -> c_6(y)
     , plus^#(s(x), y) -> c_7(plus^#(x, y))
     , app^#(l, nil()) -> c_8(l)
     , app^#(nil(), k) -> c_9(k)
     , app^#(cons(x, l), k) -> c_10(x, app^#(l, k))
     , sum^#(app(l, cons(x, cons(y, k)))) ->
       c_11(sum^#(app(l, sum(cons(x, cons(y, k))))))
     , sum^#(cons(x, nil())) -> c_12(x)
     , sum^#(cons(x, cons(y, l))) -> c_13(sum^#(cons(plus(x, y), l))) }
   
   and mark the set of starting terms.
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { minus^#(x, 0()) -> c_1(x)
     , minus^#(minus(x, y), z) -> c_2(minus^#(x, plus(y, z)))
     , minus^#(s(x), s(y)) -> c_3(minus^#(x, y))
     , quot^#(0(), s(y)) -> c_4()
     , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))
     , plus^#(0(), y) -> c_6(y)
     , plus^#(s(x), y) -> c_7(plus^#(x, y))
     , app^#(l, nil()) -> c_8(l)
     , app^#(nil(), k) -> c_9(k)
     , app^#(cons(x, l), k) -> c_10(x, app^#(l, k))
     , sum^#(app(l, cons(x, cons(y, k)))) ->
       c_11(sum^#(app(l, sum(cons(x, cons(y, k))))))
     , sum^#(cons(x, nil())) -> c_12(x)
     , sum^#(cons(x, cons(y, l))) -> c_13(sum^#(cons(plus(x, y), l))) }
   Strict Trs:
     { minus(x, 0()) -> x
     , minus(minus(x, y), z) -> minus(x, plus(y, z))
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , app(l, nil()) -> l
     , app(nil(), k) -> k
     , app(cons(x, l), k) -> cons(x, app(l, k))
     , sum(app(l, cons(x, cons(y, k)))) ->
       sum(app(l, sum(cons(x, cons(y, k)))))
     , sum(cons(x, nil())) -> cons(x, nil())
     , sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   We estimate the number of application of {4} by applications of
   Pre({4}) = {1,5,6,8,9,10,12}. Here rules are labeled as follows:
   
     DPs:
       { 1: minus^#(x, 0()) -> c_1(x)
       , 2: minus^#(minus(x, y), z) -> c_2(minus^#(x, plus(y, z)))
       , 3: minus^#(s(x), s(y)) -> c_3(minus^#(x, y))
       , 4: quot^#(0(), s(y)) -> c_4()
       , 5: quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))
       , 6: plus^#(0(), y) -> c_6(y)
       , 7: plus^#(s(x), y) -> c_7(plus^#(x, y))
       , 8: app^#(l, nil()) -> c_8(l)
       , 9: app^#(nil(), k) -> c_9(k)
       , 10: app^#(cons(x, l), k) -> c_10(x, app^#(l, k))
       , 11: sum^#(app(l, cons(x, cons(y, k)))) ->
             c_11(sum^#(app(l, sum(cons(x, cons(y, k))))))
       , 12: sum^#(cons(x, nil())) -> c_12(x)
       , 13: sum^#(cons(x, cons(y, l))) ->
             c_13(sum^#(cons(plus(x, y), l))) }
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { minus^#(x, 0()) -> c_1(x)
     , minus^#(minus(x, y), z) -> c_2(minus^#(x, plus(y, z)))
     , minus^#(s(x), s(y)) -> c_3(minus^#(x, y))
     , quot^#(s(x), s(y)) -> c_5(quot^#(minus(x, y), s(y)))
     , plus^#(0(), y) -> c_6(y)
     , plus^#(s(x), y) -> c_7(plus^#(x, y))
     , app^#(l, nil()) -> c_8(l)
     , app^#(nil(), k) -> c_9(k)
     , app^#(cons(x, l), k) -> c_10(x, app^#(l, k))
     , sum^#(app(l, cons(x, cons(y, k)))) ->
       c_11(sum^#(app(l, sum(cons(x, cons(y, k))))))
     , sum^#(cons(x, nil())) -> c_12(x)
     , sum^#(cons(x, cons(y, l))) -> c_13(sum^#(cons(plus(x, y), l))) }
   Strict Trs:
     { minus(x, 0()) -> x
     , minus(minus(x, y), z) -> minus(x, plus(y, z))
     , minus(s(x), s(y)) -> minus(x, y)
     , quot(0(), s(y)) -> 0()
     , quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
     , plus(0(), y) -> y
     , plus(s(x), y) -> s(plus(x, y))
     , app(l, nil()) -> l
     , app(nil(), k) -> k
     , app(cons(x, l), k) -> cons(x, app(l, k))
     , sum(app(l, cons(x, cons(y, k)))) ->
       sum(app(l, sum(cons(x, cons(y, k)))))
     , sum(cons(x, nil())) -> cons(x, nil())
     , sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l)) }
   Weak DPs: { quot^#(0(), s(y)) -> c_4() }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   Empty strict component of the problem is NOT empty.


Arrrr..