MAYBE We are left with following problem, upon which TcT provides the certificate MAYBE. Strict Trs: { from(X) -> cons(X, from(s(X))) , 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) , 2ndspos(0(), Z) -> rnil() , 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) , 2ndsneg(0(), Z) -> rnil() , pi(X) -> 2ndspos(X, from(0())) , plus(s(X), Y) -> s(plus(X, Y)) , plus(0(), Y) -> Y , times(s(X), Y) -> plus(Y, times(X, Y)) , times(0(), Y) -> 0() , square(X) -> times(X, X) } Obligation: runtime complexity Answer: MAYBE None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'WithProblem (timeout of 60 seconds)' failed due to the following reason: Computation stopped due to timeout after 60.0 seconds. 2) 'Best' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'WithProblem (timeout of 30 seconds) (timeout of 60 seconds)' failed due to the following reason: Computation stopped due to timeout after 30.0 seconds. 2) 'Fastest (timeout of 5 seconds) (timeout of 60 seconds)' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'Bounds with perSymbol-enrichment and initial automaton 'match'' failed due to the following reason: match-boundness of the problem could not be verified. 2) 'Bounds with minimal-enrichment and initial automaton 'match'' failed due to the following reason: match-boundness of the problem could not be verified. 3) 'Best' failed due to the following reason: None of the processors succeeded. Details of failed attempt(s): ----------------------------- 1) 'bsearch-popstar (timeout of 60 seconds)' failed due to the following reason: The processor is inapplicable, reason: Processor only applicable for innermost runtime complexity analysis 2) 'Polynomial Path Order (PS) (timeout of 60 seconds)' failed due to the following reason: The processor is inapplicable, reason: Processor only applicable for innermost runtime complexity analysis 3) 'Innermost Weak Dependency Pairs (timeout of 60 seconds)' failed due to the following reason: We add the following weak dependency pairs: Strict DPs: { from^#(X) -> c_1(X, from^#(s(X))) , 2ndspos^#(s(N), cons(X, cons(Y, Z))) -> c_2(Y, 2ndsneg^#(N, Z)) , 2ndspos^#(0(), Z) -> c_3() , 2ndsneg^#(s(N), cons(X, cons(Y, Z))) -> c_4(Y, 2ndspos^#(N, Z)) , 2ndsneg^#(0(), Z) -> c_5() , pi^#(X) -> c_6(2ndspos^#(X, from(0()))) , plus^#(s(X), Y) -> c_7(plus^#(X, Y)) , plus^#(0(), Y) -> c_8(Y) , times^#(s(X), Y) -> c_9(plus^#(Y, times(X, Y))) , times^#(0(), Y) -> c_10() , square^#(X) -> c_11(times^#(X, X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(X, from^#(s(X))) , 2ndspos^#(s(N), cons(X, cons(Y, Z))) -> c_2(Y, 2ndsneg^#(N, Z)) , 2ndspos^#(0(), Z) -> c_3() , 2ndsneg^#(s(N), cons(X, cons(Y, Z))) -> c_4(Y, 2ndspos^#(N, Z)) , 2ndsneg^#(0(), Z) -> c_5() , pi^#(X) -> c_6(2ndspos^#(X, from(0()))) , plus^#(s(X), Y) -> c_7(plus^#(X, Y)) , plus^#(0(), Y) -> c_8(Y) , times^#(s(X), Y) -> c_9(plus^#(Y, times(X, Y))) , times^#(0(), Y) -> c_10() , square^#(X) -> c_11(times^#(X, X)) } Strict Trs: { from(X) -> cons(X, from(s(X))) , 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) , 2ndspos(0(), Z) -> rnil() , 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) , 2ndsneg(0(), Z) -> rnil() , pi(X) -> 2ndspos(X, from(0())) , plus(s(X), Y) -> s(plus(X, Y)) , plus(0(), Y) -> Y , times(s(X), Y) -> plus(Y, times(X, Y)) , times(0(), Y) -> 0() , square(X) -> times(X, X) } Obligation: runtime complexity Answer: MAYBE We estimate the number of application of {3,5,10} by applications of Pre({3,5,10}) = {1,2,4,6,8,11}. Here rules are labeled as follows: DPs: { 1: from^#(X) -> c_1(X, from^#(s(X))) , 2: 2ndspos^#(s(N), cons(X, cons(Y, Z))) -> c_2(Y, 2ndsneg^#(N, Z)) , 3: 2ndspos^#(0(), Z) -> c_3() , 4: 2ndsneg^#(s(N), cons(X, cons(Y, Z))) -> c_4(Y, 2ndspos^#(N, Z)) , 5: 2ndsneg^#(0(), Z) -> c_5() , 6: pi^#(X) -> c_6(2ndspos^#(X, from(0()))) , 7: plus^#(s(X), Y) -> c_7(plus^#(X, Y)) , 8: plus^#(0(), Y) -> c_8(Y) , 9: times^#(s(X), Y) -> c_9(plus^#(Y, times(X, Y))) , 10: times^#(0(), Y) -> c_10() , 11: square^#(X) -> c_11(times^#(X, X)) } We are left with following problem, upon which TcT provides the certificate MAYBE. Strict DPs: { from^#(X) -> c_1(X, from^#(s(X))) , 2ndspos^#(s(N), cons(X, cons(Y, Z))) -> c_2(Y, 2ndsneg^#(N, Z)) , 2ndsneg^#(s(N), cons(X, cons(Y, Z))) -> c_4(Y, 2ndspos^#(N, Z)) , pi^#(X) -> c_6(2ndspos^#(X, from(0()))) , plus^#(s(X), Y) -> c_7(plus^#(X, Y)) , plus^#(0(), Y) -> c_8(Y) , times^#(s(X), Y) -> c_9(plus^#(Y, times(X, Y))) , square^#(X) -> c_11(times^#(X, X)) } Strict Trs: { from(X) -> cons(X, from(s(X))) , 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) , 2ndspos(0(), Z) -> rnil() , 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) , 2ndsneg(0(), Z) -> rnil() , pi(X) -> 2ndspos(X, from(0())) , plus(s(X), Y) -> s(plus(X, Y)) , plus(0(), Y) -> Y , times(s(X), Y) -> plus(Y, times(X, Y)) , times(0(), Y) -> 0() , square(X) -> times(X, X) } Weak DPs: { 2ndspos^#(0(), Z) -> c_3() , 2ndsneg^#(0(), Z) -> c_5() , times^#(0(), Y) -> c_10() } Obligation: runtime complexity Answer: MAYBE Empty strict component of the problem is NOT empty. Arrrr..