YES(?,O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) The input is overlay and right-linear. Switching to innermost rewriting. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(n__f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(activate(X)) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 2. The enriched problem is compatible with the following automaton. { f_0(2) -> 1 , f_1(2) -> 1 , f_1(2) -> 6 , f_1(3) -> 1 , f_1(3) -> 6 , n__f_0(2) -> 1 , n__f_0(2) -> 2 , n__f_0(2) -> 6 , n__f_1(2) -> 1 , n__f_1(5) -> 4 , n__f_2(2) -> 1 , n__f_2(2) -> 6 , n__f_2(3) -> 1 , n__f_2(3) -> 6 , n__a_0() -> 1 , n__a_0() -> 2 , n__a_0() -> 6 , n__a_1() -> 1 , n__a_1() -> 5 , n__a_2() -> 1 , n__a_2() -> 6 , n__g_0(2) -> 1 , n__g_0(2) -> 2 , n__g_0(2) -> 6 , n__g_1(2) -> 1 , n__g_1(4) -> 3 , n__g_2(6) -> 1 , n__g_2(6) -> 6 , a_0() -> 1 , a_1() -> 1 , a_1() -> 6 , g_0(2) -> 1 , g_1(6) -> 1 , g_1(6) -> 6 , activate_0(2) -> 1 , activate_1(2) -> 6 , 2 -> 1 , 2 -> 6 } Hurray, we answered YES(?,O(n^1))