YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__cons(X1, X2)) -> cons(X1, X2) , activate(n__from(X)) -> from(X) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: none TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [2nd](x1) = [1] x1 + [1] [cons](x1, x2) = [1] x1 + [1] x2 + [7] [n__cons](x1, x2) = [1] x1 + [1] x2 + [7] [activate](x1) = [1] x1 + [7] [from](x1) = [1] x1 + [3] [n__from](x1) = [1] x1 + [7] [s](x1) = [0] The following symbols are considered usable {2nd, cons, activate, from} The order satisfies the following ordering constraints: [2nd(cons(X, n__cons(Y, Z)))] = [1] X + [1] Y + [1] Z + [15] > [1] Y + [7] = [activate(Y)] [cons(X1, X2)] = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [7] = [n__cons(X1, X2)] [activate(X)] = [1] X + [7] > [1] X + [0] = [X] [activate(n__cons(X1, X2))] = [1] X1 + [1] X2 + [14] > [1] X1 + [1] X2 + [7] = [cons(X1, X2)] [activate(n__from(X))] = [1] X + [14] > [1] X + [3] = [from(X)] [from(X)] = [1] X + [3] ? [1] X + [14] = [cons(X, n__from(s(X)))] [from(X)] = [1] X + [3] ? [1] X + [7] = [n__from(X)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { cons(X1, X2) -> n__cons(X1, X2) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) } Weak Trs: { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) , activate(X) -> X , activate(n__cons(X1, X2)) -> cons(X1, X2) , activate(n__from(X)) -> from(X) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: none TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [2nd](x1) = [1] x1 + [2] [cons](x1, x2) = [1] x1 + [1] x2 + [7] [n__cons](x1, x2) = [1] x1 + [1] x2 + [6] [activate](x1) = [1] x1 + [7] [from](x1) = [1] x1 + [7] [n__from](x1) = [1] x1 + [6] [s](x1) = [1] The following symbols are considered usable {2nd, cons, activate, from} The order satisfies the following ordering constraints: [2nd(cons(X, n__cons(Y, Z)))] = [1] X + [1] Y + [1] Z + [15] > [1] Y + [7] = [activate(Y)] [cons(X1, X2)] = [1] X1 + [1] X2 + [7] > [1] X1 + [1] X2 + [6] = [n__cons(X1, X2)] [activate(X)] = [1] X + [7] > [1] X + [0] = [X] [activate(n__cons(X1, X2))] = [1] X1 + [1] X2 + [13] > [1] X1 + [1] X2 + [7] = [cons(X1, X2)] [activate(n__from(X))] = [1] X + [13] > [1] X + [7] = [from(X)] [from(X)] = [1] X + [7] ? [1] X + [14] = [cons(X, n__from(s(X)))] [from(X)] = [1] X + [7] > [1] X + [6] = [n__from(X)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { from(X) -> cons(X, n__from(s(X))) } Weak Trs: { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__cons(X1, X2)) -> cons(X1, X2) , activate(n__from(X)) -> from(X) , from(X) -> n__from(X) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) The following argument positions are usable: none TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [2nd](x1) = [1] x1 + [7] [cons](x1, x2) = [1] x1 + [1] x2 + [0] [n__cons](x1, x2) = [1] x1 + [1] x2 + [0] [activate](x1) = [1] x1 + [7] [from](x1) = [1] x1 + [7] [n__from](x1) = [1] x1 + [3] [s](x1) = [3] The following symbols are considered usable {2nd, cons, activate, from} The order satisfies the following ordering constraints: [2nd(cons(X, n__cons(Y, Z)))] = [1] X + [1] Y + [1] Z + [7] >= [1] Y + [7] = [activate(Y)] [cons(X1, X2)] = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = [n__cons(X1, X2)] [activate(X)] = [1] X + [7] > [1] X + [0] = [X] [activate(n__cons(X1, X2))] = [1] X1 + [1] X2 + [7] > [1] X1 + [1] X2 + [0] = [cons(X1, X2)] [activate(n__from(X))] = [1] X + [10] > [1] X + [7] = [from(X)] [from(X)] = [1] X + [7] > [1] X + [6] = [cons(X, n__from(s(X)))] [from(X)] = [1] X + [7] > [1] X + [3] = [n__from(X)] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { 2nd(cons(X, n__cons(Y, Z))) -> activate(Y) , cons(X1, X2) -> n__cons(X1, X2) , activate(X) -> X , activate(n__cons(X1, X2)) -> cons(X1, X2) , activate(n__from(X)) -> from(X) , from(X) -> cons(X, n__from(s(X))) , from(X) -> n__from(X) } Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))