by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x7 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x12 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −1 − arg1 + arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 | |
| 1 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 2 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 ∧ 2 + arg2P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 2 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 3 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 1 + arg3 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 3 − arg1 + arg2P ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 2 − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 3 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 3 − arg1 + arg2P ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 2 − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 3 | 7 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −2 + arg1P − arg2 ≤ 0 ∧ 2 − arg1 + arg2P ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 3 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ 1 − arg3P ≤ 0 ∧ −1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
| 4 | 8 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | 1 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 | 
| 3: | − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 | 
| 4: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | 1 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 | ||
| 3 | (3) | − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 | ||
| 4 | (4) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 0 | 2 2 | |
| 1 | 3 1 | |
| 2 | 4 3 | |
| 3 | 5 3 | |
| 3 | 6 3 | |
| 3 | 7 3 | |
| 4 | 8 0 | 
| 1 | 9 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | 
| 3 | 16 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | 
We remove transitions , , , , using the following ranking functions, which are bounded by −17.
| 4: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −11 | 
| : | −12 | 
| : | −12 | 
| : | −12 | 
| 10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC { , , }.
We remove transition using the following ranking functions, which are bounded by −1.
| : | 1 + 3⋅arg1 | 
| : | 3⋅arg1 | 
| : | 2 + 3⋅arg1 | 
| 10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] | 
| 12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 12 using the following ranking functions, which are bounded by −2.
| : | −1 | 
| : | −2 | 
| : | 0 | 
| 10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 10 using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | −1 | 
| : | 0 | 
| 10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , }.
We remove transition using the following ranking functions, which are bounded by −1.
| : | arg2 | 
| : | arg2 | 
| : | arg2 | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] | 
| 19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by −1.
| : | arg1 | 
| : | arg1 | 
| : | arg1 | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] | 
| 19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by −1.
| : | −3⋅arg3 | 
| : | −3⋅arg3 | 
| : | 1 − 3⋅arg3 | 
| 17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 17, 19 using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | −1 | 
| : | x15 | 
| 17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 19 | lexStrict[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert