by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i1_0 + i1_post ≤ 0 ∧ 1 + i1_0 − i1_post ≤ 0 ∧ i1_0 − i1_post ≤ 0 ∧ − i1_0 + i1_post ≤ 0 | |
| 2 | 1 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 3 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 3 | 3 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 4 | 5 | 5: | 42 − i1_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 4 | 6 | 3: | −41 + i1_0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 1 | 7 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | |
| 6 | 8 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i1_post ≤ 0 ∧ − i1_post ≤ 0 ∧ i1_0 − i1_post ≤ 0 ∧ − i1_0 + i1_post ≤ 0 | |
| 7 | 9 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | TRUE | 
| 5: | 42 − i1_0 ≤ 0 | 
| 6: | TRUE | 
| 7: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | 42 − i1_0 ≤ 0 | ||
| 6 | (6) | TRUE | ||
| 7 | (7) | TRUE | 
| 0 | 0 1 | |
| 1 | 7 4 | |
| 2 | 1 0 | |
| 3 | 2 2 | |
| 3 | 3 0 | |
| 3 | 4 2 | |
| 4 | 5 5 | |
| 4 | 6 3 | |
| 6 | 8 1 | |
| 7 | 9 6 | 
| 1 | 10 | : | − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0 | 
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 7: | 0 | 
| 6: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| 5: | 0 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −8 | 
| 11 | lexWeak[ [0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0] , [0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − i1_post + i1_post ≤ 0 ∧ i1_post − i1_post ≤ 0 ∧ − i1_0 + i1_0 ≤ 0 ∧ i1_0 − i1_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transition using the following ranking functions, which are bounded by −207.
| : | −2 − 5⋅i1_0 | 
| : | 1 − 5⋅i1_0 | 
| : | −2 − 5⋅i1_0 | 
| : | −2 − 5⋅i1_0 | 
| : | −1 − 5⋅i1_0 | 
| : | −5⋅i1_0 | 
| : | 2 − 5⋅i1_0 | 
| 11 | lexWeak[ [0, 0, 0, 5] ] | 
| 13 | lexWeak[ [0, 0, 0, 5] ] | 
| lexWeak[ [0, 0, 0, 5, 0, 5] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5] ] | |
| lexStrict[ [0, 0, 0, 0, 5] , [5, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 5] ] | 
We remove transitions 11, 13, , , , , , using the following ranking functions, which are bounded by −6.
| : | −2 | 
| : | −4 | 
| : | −1 | 
| : | 0 | 
| : | −6 | 
| : | −5 | 
| : | −3 | 
| 11 | lexStrict[ [0, 0, 0, 0] , [0, 0, 0, 0] ] | 
| 13 | lexStrict[ [0, 0, 0, 0] , [0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert