by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ y_13_0 ≤ 0 ∧ rt_11_post − st_14_0 ≤ 0 ∧ − rt_11_post + st_14_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 | |
| 0 | 1 | 2: | 1 − y_13_0 ≤ 0 ∧ − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 2 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_15_0 ≤ 0 ∧ rt_11_post − st_14_0 ≤ 0 ∧ − rt_11_post + st_14_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 | |
| 2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_15_0 ≤ 0 ∧ − x_15_0 + x_15_post + y_13_0 ≤ 0 ∧ x_15_0 − x_15_post − y_13_0 ≤ 0 ∧ −1 − y_13_0 + y_13_post ≤ 0 ∧ 1 + y_13_0 − y_13_post ≤ 0 ∧ x_15_0 − x_15_post ≤ 0 ∧ − x_15_0 + x_15_post ≤ 0 ∧ y_13_0 − y_13_post ≤ 0 ∧ − y_13_0 + y_13_post ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 3 | 4 | 2: | − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 4 | 5 | 0: | − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | 
| 2 | 6 | : | − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | 
We remove transitions , , , using the following ranking functions, which are bounded by −13.
| 4: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 1: | 0 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −11 | 
| 7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − y_13_post + y_13_post ≤ 0 ∧ y_13_post − y_13_post ≤ 0 ∧ − y_13_0 + y_13_0 ≤ 0 ∧ y_13_0 − y_13_0 ≤ 0 ∧ − x_15_post + x_15_post ≤ 0 ∧ x_15_post − x_15_post ≤ 0 ∧ − x_15_0 + x_15_0 ≤ 0 ∧ x_15_0 − x_15_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_2_y_13_post is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_y_13_post ≤ y_13_post ∧ y_13_post ≤ __snapshot_2_y_13_post | 
| 9: | __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post ∧ __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post | 
| : | __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post ∧ __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post | 
| : | __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post ∧ __snapshot_2_y_13_post ≤ __snapshot_2_y_13_post | 
The new variable __snapshot_2_y_13_0 is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_y_13_0 ≤ y_13_0 ∧ y_13_0 ≤ __snapshot_2_y_13_0 | 
| 9: | __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 ∧ __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 | 
| : | __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 ∧ __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 | 
| : | __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 ∧ __snapshot_2_y_13_0 ≤ __snapshot_2_y_13_0 | 
The new variable __snapshot_2_x_15_post is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_x_15_post ≤ x_15_post ∧ x_15_post ≤ __snapshot_2_x_15_post | 
| 9: | __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post ∧ __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post | 
| : | __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post ∧ __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post | 
| : | __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post ∧ __snapshot_2_x_15_post ≤ __snapshot_2_x_15_post | 
The new variable __snapshot_2_x_15_0 is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_x_15_0 ≤ x_15_0 ∧ x_15_0 ≤ __snapshot_2_x_15_0 | 
| 9: | __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 ∧ __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 | 
| : | __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 ∧ __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 | 
| : | __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 ∧ __snapshot_2_x_15_0 ≤ __snapshot_2_x_15_0 | 
The new variable __snapshot_2_st_14_0 is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_st_14_0 ≤ st_14_0 ∧ st_14_0 ≤ __snapshot_2_st_14_0 | 
| 9: | __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 ∧ __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 | 
| : | __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 ∧ __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 | 
| : | __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 ∧ __snapshot_2_st_14_0 ≤ __snapshot_2_st_14_0 | 
The new variable __snapshot_2_rt_11_post is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_rt_11_post ≤ rt_11_post ∧ rt_11_post ≤ __snapshot_2_rt_11_post | 
| 9: | __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post ∧ __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post | 
| : | __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post ∧ __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post | 
| : | __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post ∧ __snapshot_2_rt_11_post ≤ __snapshot_2_rt_11_post | 
The new variable __snapshot_2_rt_11_0 is introduced. The transition formulas are extended as follows:
| 7: | __snapshot_2_rt_11_0 ≤ rt_11_0 ∧ rt_11_0 ≤ __snapshot_2_rt_11_0 | 
| 9: | __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 ∧ __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 | 
| : | __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 ∧ __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 | 
| : | __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 ∧ __snapshot_2_rt_11_0 ≤ __snapshot_2_rt_11_0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | 1 − y_13_0 ≤ 0 | 
| 3: | 1 − y_13_0 ≤ 0 | 
| 4: | TRUE | 
| : | 1 − y_13_0 ≤ 0 ∨ 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | 
| : | 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | 
| : | − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 + x_15_0 − y_13_0 ≤ 0 ∧ − y_13_0 ≤ 0 | 
| : | 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | 
The invariants are proved as follows.
| 0 | (4) | TRUE | ||
| 1 | (0) | TRUE | ||
| 2 | (1) | TRUE | ||
| 3 | (2) | 1 − y_13_0 ≤ 0 | ||
| 4 | (1) | TRUE | ||
| 5 | (3) | 1 − y_13_0 ≤ 0 | ||
| 6 | () | 1 − y_13_0 ≤ 0 | ||
| 7 | () | − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 + x_15_0 − y_13_0 ≤ 0 ∧ − y_13_0 ≤ 0 | ||
| 12 | (2) | 1 − y_13_0 ≤ 0 | ||
| 16 | () | 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | ||
| 17 | () | 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | ||
| 18 | () | 1 − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 ≤ 0 ∧ 1 − y_13_0 ≤ 0 | ||
| 19 | () | − __snapshot_2_x_15_0 + x_15_0 ≤ 0 ∧ 1 − __snapshot_2_x_15_0 + x_15_0 − y_13_0 ≤ 0 ∧ − y_13_0 ≤ 0 | 
| 2 | → 4 | Hint: auto | ||||||
| 12 | → 3 | Hint: [1] | ||||||
| 19 | → 7 | 
                  Hint:
                  
        distribute conclusion
  | 
| 0 | 5 1 | Hint: auto | ||||||
| 1 | 0 2 | Hint: auto | ||||||
| 1 | 1 3 | Hint: [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||
| 3 | 2 4 | Hint: auto | ||||||
| 3 | 3 5 | Hint: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] | ||||||
| 3 | 6 6 | Hint: [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||
| 5 | 4 12 | Hint: [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ||||||
| 6 | 7 7 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||
| 7 | 16 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||
| 16 | 17 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||
| 17 | 9 18 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||
| 18 | 7 19 | 
                  Hint:
                  
        distribute conclusion
  | 
We remove transition 9 using the following ranking functions, which are bounded by −1.
| : | x_15_0 | 
| : | __snapshot_2_x_15_0 | 
| : | __snapshot_2_x_15_0 | 
| : | __snapshot_2_x_15_0 | 
| 7 | 
        distribute assertion
  | 
||||
| 9 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] ] | |||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 7 using the following ranking functions, which are bounded by −6.
| : | −1 | 
| : | −2 | 
| : | −3 | 
| : | −4 | 
| 7 | 
        distribute assertion
  | 
||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert