by T2Cert
| 0 | 0 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_13_0 ≤ 0 ∧ rt_11_post − st_14_0 ≤ 0 ∧ − rt_11_post + st_14_0 ≤ 0 ∧ rt_11_0 − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_post ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ − nd_12_1 + rv_15_post ≤ 0 ∧ nd_12_1 − rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ rv_15_post ≤ 0 ∧ 1 − y_17_0 + y_17_post ≤ 0 ∧ −1 + y_17_0 − y_17_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ rv_15_0 − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_post ≤ 0 ∧ st_16_0 − st_16_post ≤ 0 ∧ − st_16_0 + st_16_post ≤ 0 ∧ y_17_0 − y_17_post ≤ 0 ∧ − y_17_0 + y_17_post ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 3 | 3 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 1 | 4 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ − nd_12_1 + rv_15_post ≤ 0 ∧ nd_12_1 − rv_15_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ rv_15_0 − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_post ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 4 | 5 | 5: | 1 − rv_15_0 ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 4 | 6 | 5: | 1 + rv_15_0 ≤ 0 ∧ − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 5 | 7 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_13_0 + x_13_post ≤ 0 ∧ −1 + x_13_0 − x_13_post ≤ 0 ∧ − nd_12_1 + y_17_post ≤ 0 ∧ nd_12_1 − y_17_post ≤ 0 ∧ nd_12_0 − nd_12_post ≤ 0 ∧ − nd_12_0 + nd_12_post ≤ 0 ∧ x_13_0 − x_13_post ≤ 0 ∧ − x_13_0 + x_13_post ≤ 0 ∧ y_17_0 − y_17_post ≤ 0 ∧ − y_17_0 + y_17_post ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 | |
| 6 | 8 | 1: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 | |
| 7 | 9 | 0: | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | TRUE |
| 2: | x_13_0 ≤ 0 |
| 3: | rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 2 − y_17_0 ≤ 0 ∧ rv_15_0 ≤ 0 ∧ − rv_15_0 ≤ 0 |
| 4: | 1 − x_13_0 ≤ 0 |
| 5: | 1 − x_13_0 ≤ 0 |
| 6: | TRUE |
| 7: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | x_13_0 ≤ 0 | ||
| 3 | (3) | rv_15_post ≤ 0 ∧ − rv_15_post ≤ 0 ∧ 2 − y_17_post ≤ 0 ∧ 1 − x_13_0 ≤ 0 ∧ 2 − y_17_0 ≤ 0 ∧ rv_15_0 ≤ 0 ∧ − rv_15_0 ≤ 0 | ||
| 4 | (4) | 1 − x_13_0 ≤ 0 | ||
| 5 | (5) | 1 − x_13_0 ≤ 0 | ||
| 6 | (6) | TRUE | ||
| 7 | (7) | TRUE |
| 0 | 0 1 | |
| 1 | 1 2 | |
| 1 | 2 3 | |
| 1 | 4 4 | |
| 3 | 3 1 | |
| 4 | 5 5 | |
| 4 | 6 5 | |
| 5 | 7 6 | |
| 6 | 8 1 | |
| 7 | 9 0 |
| 1 | 10 | : | − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0 |
We remove transitions , , using the following ranking functions, which are bounded by −13.
| 7: | 0 |
| 0: | 0 |
| 1: | 0 |
| 3: | 0 |
| 4: | 0 |
| 5: | 0 |
| 6: | 0 |
| 2: | 0 |
| : | −5 |
| : | −6 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −7 |
| : | −11 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − y_17_post + y_17_post ≤ 0 ∧ y_17_post − y_17_post ≤ 0 ∧ − y_17_0 + y_17_0 ≤ 0 ∧ y_17_0 − y_17_0 ≤ 0 ∧ − x_13_post + x_13_post ≤ 0 ∧ x_13_post − x_13_post ≤ 0 ∧ − x_13_0 + x_13_0 ≤ 0 ∧ x_13_0 − x_13_0 ≤ 0 ∧ − st_16_post + st_16_post ≤ 0 ∧ st_16_post − st_16_post ≤ 0 ∧ − st_16_0 + st_16_0 ≤ 0 ∧ st_16_0 − st_16_0 ≤ 0 ∧ − st_14_0 + st_14_0 ≤ 0 ∧ st_14_0 − st_14_0 ≤ 0 ∧ − rv_15_post + rv_15_post ≤ 0 ∧ rv_15_post − rv_15_post ≤ 0 ∧ − rv_15_0 + rv_15_0 ≤ 0 ∧ rv_15_0 − rv_15_0 ≤ 0 ∧ − rt_11_post + rt_11_post ≤ 0 ∧ rt_11_post − rt_11_post ≤ 0 ∧ − rt_11_0 + rt_11_0 ≤ 0 ∧ rt_11_0 − rt_11_0 ≤ 0 ∧ − nd_12_post + nd_12_post ≤ 0 ∧ nd_12_post − nd_12_post ≤ 0 ∧ − nd_12_1 + nd_12_1 ≤ 0 ∧ nd_12_1 − nd_12_1 ≤ 0 ∧ − nd_12_0 + nd_12_0 ≤ 0 ∧ nd_12_0 − nd_12_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transitions , using the following ranking functions, which are bounded by 2.
| : | −1 + 4⋅x_13_0 |
| : | −1 + 4⋅x_13_0 |
| : | −1 + 4⋅x_13_0 |
| : | −4 + 4⋅x_13_0 |
| : | 4⋅x_13_0 |
| : | −1 + 4⋅x_13_0 |
| : | −1 + 4⋅x_13_0 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions , using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | 0 |
| : | − x_13_0 |
| : | 2⋅x_13_0 |
| : | 1 |
| : | 0 |
| : | 0 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition using the following ranking functions, which are bounded by 0.
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 1 |
| : | 0 |
| : | 0 |
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions , using the following ranking functions, which are bounded by 7.
| : | −2 + 4⋅y_17_0 |
| : | 4⋅y_17_0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | −3 + 4⋅y_17_0 |
| : | −1 + 4⋅y_17_0 |
| 11 | lexWeak[ [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexWeak[ [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 11, 13 using the following ranking functions, which are bounded by −2.
| : | −1 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | 0 |
| : | −2 |
| : | 0 |
| 11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 13 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert