by T2Cert
| 0 | 0 | 1: | 1 ≤ 0 ∧ − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 1 | 1 | 0: | − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ b_post ≤ 0 ∧ − b_post ≤ 0 ∧ b_0 − b_post ≤ 0 ∧ − b_0 + b_post ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 2 | 3 | 3: | b_0 ≤ 0 ∧ − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 4 | 4 | 0: | a_0 ≤ 0 ∧ − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 4 | 5 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + b_post ≤ 0 ∧ 1 − b_post ≤ 0 ∧ b_0 − b_post ≤ 0 ∧ − b_0 + b_post ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | |
| 5 | 6 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ a_0 − a_post ≤ 0 ∧ − a_0 + a_post ≤ 0 ∧ − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 | |
| 6 | 7 | 5: | − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | 
The following invariants are asserted.
| 0: | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ a_0 ≤ 0 | 
| 1: | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ a_0 ≤ 0 | 
| 2: | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ −1 + b_post ≤ 0 ∧ −1 + b_0 ≤ 0 | 
| 3: | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ −1 + b_post ≤ 0 ∧ b_0 ≤ 0 | 
| 4: | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 | 
| 5: | TRUE | 
| 6: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ a_0 ≤ 0 | ||
| 1 | (1) | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ a_0 ≤ 0 | ||
| 2 | (2) | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ −1 + b_post ≤ 0 ∧ −1 + b_0 ≤ 0 | ||
| 3 | (3) | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 ∧ −1 + b_post ≤ 0 ∧ b_0 ≤ 0 | ||
| 4 | (4) | −1 + a_post ≤ 0 ∧ 1 − a_post ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ 1 − a_0 ≤ 0 | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | 
| 0 | 0 1 | |
| 0 | 2 2 | |
| 1 | 1 0 | |
| 2 | 3 3 | |
| 4 | 4 0 | |
| 4 | 5 2 | |
| 5 | 6 4 | |
| 6 | 7 5 | 
| 0 | 8 | : | − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 | 
We remove transitions , , , , , using the following ranking functions, which are bounded by −17.
| 6: | 0 | 
| 5: | 0 | 
| 4: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| : | −7 | 
| : | −8 | 
| : | −9 | 
| : | −10 | 
| : | −10 | 
| : | −10 | 
| : | −10 | 
| : | −14 | 
| : | −15 | 
| 9 | lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − b_post + b_post ≤ 0 ∧ b_post − b_post ≤ 0 ∧ − b_0 + b_0 ≤ 0 ∧ b_0 − b_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transitions 11, , using the following ranking functions, which are bounded by −3.
| : | −2 | 
| : | 0 | 
| : | 0 | 
| : | −1 | 
| 9 | lexWeak[ [0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 9 using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| 9 | lexStrict[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert