by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 10 − i4_0 ≤ 0 ∧ i7_post ≤ 0 ∧ − i7_post ≤ 0 ∧ i7_0 − i7_post ≤ 0 ∧ − i7_0 + i7_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −9 + i4_0 ≤ 0 ∧ −1 − i4_0 + i4_post ≤ 0 ∧ 1 + i4_0 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 | |
2 | 2 | 0: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
1 | 3 | 3: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
3 | 4 | 4: | 10 − i7_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
3 | 5 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −9 + i7_0 ≤ 0 ∧ −1 − i7_0 + i7_post ≤ 0 ∧ 1 + i7_0 − i7_post ≤ 0 ∧ i7_0 − i7_post ≤ 0 ∧ − i7_0 + i7_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
5 | 6 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ i4_post ≤ 0 ∧ − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 | |
6 | 7 | 5: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 10 − i4_0 ≤ 0 |
2: | TRUE |
3: | 10 − i4_0 ≤ 0 |
4: | 10 − i4_0 ≤ 0 ∧ 10 − i7_0 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 10 − i4_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | 10 − i4_0 ≤ 0 | ||
4 | (4) | 10 − i4_0 ≤ 0 ∧ 10 − i7_0 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 3 3 | |
2 | 2 0 | |
3 | 4 4 | |
3 | 5 1 | |
5 | 6 2 | |
6 | 7 5 |
1 | 8 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 |
2 | 15 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 |
We remove transitions
, , , using the following ranking functions, which are bounded by −17.6: | 0 |
5: | 0 |
0: | 0 |
2: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i7_post + i7_post ≤ 0 ∧ i7_post − i7_post ≤ 0 ∧ − i7_0 + i7_0 ≤ 0 ∧ i7_0 − i7_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −30.: | −3⋅i7_0 |
: | −2 − 3⋅i7_0 |
: | −1 − 3⋅i7_0 |
: | −3⋅i7_0 |
9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0] ] |
11 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 9, 11, using the following ranking functions, which are bounded by −1.
: | i4_0 |
: | − i4_0 |
: | 0 |
: | 1 + i4_0 |
9 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −38.: | −1 − 4⋅i4_0 |
: | 1 − 4⋅i4_0 |
: | −4⋅i4_0 |
: | 2 − 4⋅i4_0 |
16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
18 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] |
We remove transitions 16, 18 using the following ranking functions, which are bounded by −1.
: | −2 |
: | 0 |
: | −1 |
: | 1 |
16 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
18 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | −1 |
: | 0 |
: | 0 |
: | 0 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert