by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − ___const_100_0 + k_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ tmp___0_0 − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 0 | 1 | 2: | 1 + ___const_100_0 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 3 | 2 | 0: | 1 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 3 | 3 | 2: | k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 1 | 4 | 4: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 5 | 5 | 2: | i_0 − j_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 5 | 6 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i_0 + j_0 ≤ 0 ∧ −1 − j_0 + j_post ≤ 0 ∧ 1 + j_0 − j_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 7 | 7 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i_0 + i_post ≤ 0 ∧ −1 + i_0 − i_post ≤ 0 ∧ j_post ≤ 0 ∧ − j_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 6 | 8 | 5: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 8 | 9 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 8 | 10 | 7: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 4 | 11 | 7: | i_0 − k_0 ≤ 0 ∧ − i_0 + k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 4 | 12 | 8: | 1 − i_0 + k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 4 | 13 | 8: | 1 + i_0 − k_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 9 | 14 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ k_post − tmp_post ≤ 0 ∧ − k_post + tmp_post ≤ 0 ∧ k_0 − k_post ≤ 0 ∧ − k_0 + k_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | |
| 10 | 15 | 9: | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | 
The following invariants are asserted.
| 0: | 1 − k_0 ≤ 0 | 
| 1: | 1 − k_0 ≤ 0 | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | 1 − k_0 ≤ 0 | 
| 5: | 1 − k_0 ≤ 0 | 
| 6: | 1 − k_0 ≤ 0 | 
| 7: | 1 − k_0 ≤ 0 | 
| 8: | 1 − k_0 ≤ 0 | 
| 9: | TRUE | 
| 10: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | 1 − k_0 ≤ 0 | ||
| 1 | (1) | 1 − k_0 ≤ 0 | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | 1 − k_0 ≤ 0 | ||
| 5 | (5) | 1 − k_0 ≤ 0 | ||
| 6 | (6) | 1 − k_0 ≤ 0 | ||
| 7 | (7) | 1 − k_0 ≤ 0 | ||
| 8 | (8) | 1 − k_0 ≤ 0 | ||
| 9 | (9) | TRUE | ||
| 10 | (10) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 1 | 4 4 | |
| 3 | 2 0 | |
| 3 | 3 2 | |
| 4 | 11 7 | |
| 4 | 12 8 | |
| 4 | 13 8 | |
| 5 | 5 2 | |
| 5 | 6 6 | |
| 6 | 8 5 | |
| 7 | 7 6 | |
| 8 | 9 1 | |
| 8 | 10 7 | |
| 9 | 14 3 | |
| 10 | 15 9 | 
| 1 | 16 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | 
| 6 | 23 | : | − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0 | 
We remove transitions , , , , , , , , , using the following ranking functions, which are bounded by −23.
| 10: | 0 | 
| 9: | 0 | 
| 3: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 4: | 0 | 
| 8: | 0 | 
| 7: | 0 | 
| 5: | 0 | 
| 6: | 0 | 
| 2: | 0 | 
| : | −9 | 
| : | −10 | 
| : | −11 | 
| : | −12 | 
| : | −13 | 
| : | −13 | 
| : | −13 | 
| : | −13 | 
| : | −13 | 
| : | −14 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −21 | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp___0_post + tmp___0_post ≤ 0 ∧ tmp___0_post − tmp___0_post ≤ 0 ∧ − tmp___0_0 + tmp___0_0 ≤ 0 ∧ tmp___0_0 − tmp___0_0 ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − k_post + k_post ≤ 0 ∧ k_post − k_post ≤ 0 ∧ − k_0 + k_0 ≤ 0 ∧ k_0 − k_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − ___const_100_0 + ___const_100_0 ≤ 0 ∧ ___const_100_0 − ___const_100_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 2.
| : | −1 + 4⋅i_0 − 4⋅j_0 | 
| : | 1 + 4⋅i_0 − 4⋅j_0 | 
| : | 4⋅i_0 − 4⋅j_0 | 
| : | 2 + 4⋅i_0 − 4⋅j_0 | 
We remove transitions 24, 26, using the following ranking functions, which are bounded by −1.
| : | −1 | 
| : | −1 + 2⋅k_0 | 
| : | 0 | 
| : | 2⋅k_0 | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , , }.
We remove transition using the following ranking functions, which are bounded by 4.
| : | 2 − 5⋅i_0 + 5⋅k_0 | 
| : | −5⋅i_0 + 5⋅k_0 | 
| : | −1 − 5⋅i_0 + 5⋅k_0 | 
| : | 1 − 5⋅i_0 + 5⋅k_0 | 
| : | 3 − 5⋅i_0 + 5⋅k_0 | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
| 0: | 1 − k_0 ≤ 0 | 
| 1: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| 5: | 1 − k_0 ≤ 0 | 
| 6: | 1 − k_0 ≤ 0 | 
| 7: | 1 − k_0 ≤ 0 | 
| 8: | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| 9: | TRUE | 
| 10: | TRUE | 
| : | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| : | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| : | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| : | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 ∨ i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| : | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
The invariants are proved as follows.
| 0 | (10) | TRUE | ||
| 1 | (9) | TRUE | ||
| 2 | (3) | TRUE | ||
| 3 | (0) | 1 − k_0 ≤ 0 | ||
| 4 | (2) | TRUE | ||
| 5 | (1) | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 6 | (2) | TRUE | ||
| 7 | (4) | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 8 | () | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 9 | () | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 14 | (7) | 1 − k_0 ≤ 0 | ||
| 15 | (8) | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 16 | (8) | 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 17 | (1) | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 18 | (7) | 1 − k_0 ≤ 0 | ||
| 23 | () | −1 + i_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 24 | () | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 32 | (6) | 1 − k_0 ≤ 0 | ||
| 33 | (5) | 1 − k_0 ≤ 0 | ||
| 35 | (2) | TRUE | ||
| 36 | (6) | 1 − k_0 ≤ 0 | ||
| 38 | (4) | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 39 | () | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 40 | () | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 45 | () | i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 46 | () | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 51 | (7) | 1 − k_0 ≤ 0 | ||
| 52 | (8) | 1 ≤ 0 ∧ 1 − k_0 ≤ 0 | ||
| 53 | (8) | 1 + i_0 − k_0 ≤ 0 ∧ 1 − k_0 ≤ 0 | 
| 4 | → 6 | |
| 14 | → 18 | |
| 35 | → 6 | |
| 36 | → 32 | |
| 51 | → 18 | |
| 53 | → 16 | 
| 0 | 15 1 | |
| 1 | 14 2 | |
| 2 | 2 3 | |
| 2 | 3 4 | |
| 3 | 0 5 | |
| 3 | 1 6 | |
| 5 | 4 7 | |
| 5 | 16 8 | |
| 7 | 11 14 | |
| 7 | 12 15 | |
| 7 | 13 16 | |
| 8 | 17 9 | |
| 9 | 23 | |
| 16 | 9 17 | |
| 16 | 10 18 | |
| 17 | 4 38 | |
| 17 | 16 39 | |
| 18 | 7 32 | |
| 23 | 24 | |
| 32 | 8 33 | |
| 33 | 5 35 | |
| 33 | 6 36 | |
| 38 | 11 51 | |
| 38 | 12 52 | |
| 38 | 13 53 | |
| 39 | 17 40 | |
| 40 | 45 | |
| 45 | 46 | 
We remove transition 17 using the following ranking functions, which are bounded by −7.
| : | −1 | 
| : | −2 | 
| : | −3 | 
| : | −4 | 
| : | −5 | 
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert