by T2Cert
| 0 | 0 | 1: | 1 + i34_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i34_0 ≤ 0 ∧ 1 − i34_0 + i34_post ≤ 0 ∧ −1 + i34_0 − i34_post ≤ 0 ∧ i34_0 − i34_post ≤ 0 ∧ − i34_0 + i34_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 3 | 2 | 1: | 1 − i2_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 3 | 3 | 1: | 1 + i2_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i2_0 ≤ 0 ∧ − i2_0 ≤ 0 ∧ − ___const_999_0 + i34_post ≤ 0 ∧ ___const_999_0 − i34_post ≤ 0 ∧ i34_0 − i34_post ≤ 0 ∧ − i34_0 + i34_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 2 | 5 | 0: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 4 | 6 | 5: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 6 | 7 | 7: | 1 + i8_0 ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 6 | 8 | 8: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i8_0 ≤ 0 ∧ 1 − i8_0 + i8_post ≤ 0 ∧ −1 + i8_0 − i8_post ≤ 0 ∧ i8_0 − i8_post ≤ 0 ∧ − i8_0 + i8_post ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 8 | 9 | 6: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 5 | 10 | 8: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ − ___const_999_0 + i8_post ≤ 0 ∧ ___const_999_0 − i8_post ≤ 0 ∧ i8_0 − i8_post ≤ 0 ∧ − i8_0 + i8_post ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 5 | 11 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − i6_0 ≤ 0 ∧ 1 − i6_0 + i6_post ≤ 0 ∧ −1 + i6_0 − i6_post ≤ 0 ∧ i6_0 − i6_post ≤ 0 ∧ − i6_0 + i6_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 1 | 12 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − ___const_999_0 + i6_post ≤ 0 ∧ ___const_999_0 − i6_post ≤ 0 ∧ i6_0 − i6_post ≤ 0 ∧ − i6_0 + i6_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 9 | 13 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | |
| 10 | 14 | 9: | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | 
The following invariants are asserted.
| 0: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | 
| 1: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | 
| 2: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | 
| 3: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | 
| 4: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | 
| 5: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | 
| 6: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | 
| 7: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ 1 + i8_0 ≤ 0 | 
| 8: | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | 
| 9: | TRUE | 
| 10: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | ||
| 1 | (1) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
| 2 | (2) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ i2_0 ≤ 0 | ||
| 3 | (3) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
| 4 | (4) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
| 5 | (5) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 | ||
| 6 | (6) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | ||
| 7 | (7) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 ∧ 1 + i8_0 ≤ 0 | ||
| 8 | (8) | −1 + i2_post ≤ 0 ∧ 1 − i2_post ≤ 0 ∧ −1 + i2_0 ≤ 0 ∧ 1 − i2_0 ≤ 0 ∧ 1 + i6_0 ≤ 0 | ||
| 9 | (9) | TRUE | ||
| 10 | (10) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 1 | 12 4 | |
| 2 | 5 0 | |
| 3 | 2 1 | |
| 3 | 3 1 | |
| 3 | 4 2 | |
| 4 | 6 5 | |
| 5 | 10 8 | |
| 5 | 11 4 | |
| 6 | 7 7 | |
| 6 | 8 8 | |
| 8 | 9 6 | |
| 9 | 13 3 | |
| 10 | 14 9 | 
| 2 | 15 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | 
| 4 | 22 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | 
| 8 | 29 | : | − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0 | 
We remove transitions , , , , , , , , using the following ranking functions, which are bounded by −25.
| 10: | 0 | 
| 9: | 0 | 
| 3: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 1: | 0 | 
| 4: | 0 | 
| 5: | 0 | 
| 6: | 0 | 
| 8: | 0 | 
| 7: | 0 | 
| : | −9 | 
| : | −10 | 
| : | −11 | 
| : | −12 | 
| : | −12 | 
| : | −12 | 
| : | −12 | 
| : | −13 | 
| : | −14 | 
| : | −14 | 
| : | −14 | 
| : | −14 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −16 | 
| 16 | lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 23 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 30 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
25 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
23 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
32 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
30 : − i8_post + i8_post ≤ 0 ∧ i8_post − i8_post ≤ 0 ∧ − i8_0 + i8_0 ≤ 0 ∧ i8_0 − i8_0 ≤ 0 ∧ − i6_post + i6_post ≤ 0 ∧ i6_post − i6_post ≤ 0 ∧ − i6_0 + i6_0 ≤ 0 ∧ i6_0 − i6_0 ≤ 0 ∧ − i34_post + i34_post ≤ 0 ∧ i34_post − i34_post ≤ 0 ∧ − i34_0 + i34_0 ≤ 0 ∧ i34_0 − i34_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 ∧ − ___const_999_0 + ___const_999_0 ≤ 0 ∧ ___const_999_0 − ___const_999_0 ≤ 0
We consider subproblems for each of the 3 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −4.
| : | − i2_0 − 2⋅i2_post + 4⋅i8_0 | 
| : | −1 + 4⋅i8_0 | 
| : | −2⋅i2_post + 4⋅i8_0 | 
| : | 4⋅i8_0 | 
| 30 | lexWeak[ [0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0] ] | 
| 32 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [2, 0, 1, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [2, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0] ] | 
We remove transitions 30, 32, using the following ranking functions, which are bounded by −2.
| : | −2⋅i2_0 | 
| : | 0 | 
| : | − i2_0 | 
| : | i2_post | 
| 30 | lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 32 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 0.
| : | 3⋅i2_0 + 4⋅i6_0 | 
| : | i2_post + 4⋅i6_0 | 
| : | 2⋅i2_post + 4⋅i6_0 | 
| : | 3⋅i2_0 + i2_post + 4⋅i6_0 | 
| 23 | lexWeak[ [2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0] ] | 
| 25 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0] ] | 
| lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 3, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 25, using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | − i2_0 | 
| : | 0 | 
| : | 1 | 
| 23 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 25 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 23 using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | 0 | 
| : | − i2_0 | 
| : | 0 | 
| 23 | lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transitions 16, 18, , using the following ranking functions, which are bounded by −2.
| : | 1 | 
| : | − i2_post | 
| : | 0 | 
| : | 0 | 
| 16 | lexStrict[ [1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 18 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert