by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post + x0_post ≤ 0 ∧ −1 + oldX0_post − x0_post ≤ 0 ∧ − oldX2_post + x1_post ≤ 0 ∧ oldX2_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 | |
| 0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ 1 − oldX1_post + x1_post ≤ 0 ∧ −1 + oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 3 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
| 3 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post + x0_post ≤ 0 ∧ −1 + oldX0_post − x0_post ≤ 0 ∧ −1 + x1_post ≤ 0 ∧ 1 − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 4 | 5 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 4 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX1_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 5 | 7 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX2_post + x0_post ≤ 0 ∧ oldX2_post − x0_post ≤ 0 ∧ − oldX3_post + x1_post ≤ 0 ∧ oldX3_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ oldX2_0 − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_post ≤ 0 ∧ oldX3_0 − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 | |
| 6 | 8 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ 1 − oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 6 | 9 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ oldX0_post ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 2 | 10 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ oldX0_post − x0_0 ≤ 0 ∧ − oldX0_post + x0_0 ≤ 0 ∧ oldX1_post − x1_0 ≤ 0 ∧ − oldX1_post + x1_0 ≤ 0 ∧ − oldX0_post + x0_post ≤ 0 ∧ oldX0_post − x0_post ≤ 0 ∧ − oldX1_post + x1_post ≤ 0 ∧ oldX1_post − x1_post ≤ 0 ∧ oldX0_0 − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_post ≤ 0 ∧ oldX1_0 − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_post ≤ 0 ∧ x0_0 − x0_post ≤ 0 ∧ − x0_0 + x0_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 | |
| 7 | 11 | 0: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 12 | 3: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 13 | 1: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 14 | 4: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 15 | 5: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 16 | 6: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 7 | 17 | 2: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | |
| 8 | 18 | 7: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | 
| 2 | 19 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0 | 
We remove transitions , , , , , , , , , , , using the following ranking functions, which are bounded by −15.
| 8: | 0 | 
| 7: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| 6: | 0 | 
| 5: | 0 | 
| 1: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −9 | 
| : | −10 | 
| 20 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − x0_post + x0_post ≤ 0 ∧ x0_post − x0_post ≤ 0 ∧ − x0_0 + x0_0 ≤ 0 ∧ x0_0 − x0_0 ≤ 0 ∧ − oldX3_post + oldX3_post ≤ 0 ∧ oldX3_post − oldX3_post ≤ 0 ∧ − oldX3_0 + oldX3_0 ≤ 0 ∧ oldX3_0 − oldX3_0 ≤ 0 ∧ − oldX2_post + oldX2_post ≤ 0 ∧ oldX2_post − oldX2_post ≤ 0 ∧ − oldX2_0 + oldX2_0 ≤ 0 ∧ oldX2_0 − oldX2_0 ≤ 0 ∧ − oldX1_post + oldX1_post ≤ 0 ∧ oldX1_post − oldX1_post ≤ 0 ∧ − oldX1_0 + oldX1_0 ≤ 0 ∧ oldX1_0 − oldX1_0 ≤ 0 ∧ − oldX0_post + oldX0_post ≤ 0 ∧ oldX0_post − oldX0_post ≤ 0 ∧ − oldX0_0 + oldX0_0 ≤ 0 ∧ oldX0_0 − oldX0_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_2_x1_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_x1_post ≤ x1_post ∧ x1_post ≤ __snapshot_2_x1_post | 
| 22: | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
| : | __snapshot_2_x1_post ≤ __snapshot_2_x1_post ∧ __snapshot_2_x1_post ≤ __snapshot_2_x1_post | 
The new variable __snapshot_2_x1_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_x1_0 ≤ x1_0 ∧ x1_0 ≤ __snapshot_2_x1_0 | 
| 22: | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
| : | __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 ∧ __snapshot_2_x1_0 ≤ __snapshot_2_x1_0 | 
The new variable __snapshot_2_x0_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_x0_post ≤ x0_post ∧ x0_post ≤ __snapshot_2_x0_post | 
| 22: | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
| : | __snapshot_2_x0_post ≤ __snapshot_2_x0_post ∧ __snapshot_2_x0_post ≤ __snapshot_2_x0_post | 
The new variable __snapshot_2_x0_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_x0_0 ≤ x0_0 ∧ x0_0 ≤ __snapshot_2_x0_0 | 
| 22: | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
| : | __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 ∧ __snapshot_2_x0_0 ≤ __snapshot_2_x0_0 | 
The new variable __snapshot_2_oldX3_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX3_post ≤ oldX3_post ∧ oldX3_post ≤ __snapshot_2_oldX3_post | 
| 22: | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
| : | __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post ∧ __snapshot_2_oldX3_post ≤ __snapshot_2_oldX3_post | 
The new variable __snapshot_2_oldX3_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX3_0 ≤ oldX3_0 ∧ oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| 22: | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
| : | __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 ∧ __snapshot_2_oldX3_0 ≤ __snapshot_2_oldX3_0 | 
The new variable __snapshot_2_oldX2_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX2_post ≤ oldX2_post ∧ oldX2_post ≤ __snapshot_2_oldX2_post | 
| 22: | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
| : | __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post ∧ __snapshot_2_oldX2_post ≤ __snapshot_2_oldX2_post | 
The new variable __snapshot_2_oldX2_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX2_0 ≤ oldX2_0 ∧ oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| 22: | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
| : | __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 ∧ __snapshot_2_oldX2_0 ≤ __snapshot_2_oldX2_0 | 
The new variable __snapshot_2_oldX1_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX1_post ≤ oldX1_post ∧ oldX1_post ≤ __snapshot_2_oldX1_post | 
| 22: | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
| : | __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post ∧ __snapshot_2_oldX1_post ≤ __snapshot_2_oldX1_post | 
The new variable __snapshot_2_oldX1_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX1_0 ≤ oldX1_0 ∧ oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| 22: | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
| : | __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 ∧ __snapshot_2_oldX1_0 ≤ __snapshot_2_oldX1_0 | 
The new variable __snapshot_2_oldX0_post is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX0_post ≤ oldX0_post ∧ oldX0_post ≤ __snapshot_2_oldX0_post | 
| 22: | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
| : | __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post ∧ __snapshot_2_oldX0_post ≤ __snapshot_2_oldX0_post | 
The new variable __snapshot_2_oldX0_0 is introduced. The transition formulas are extended as follows:
| 20: | __snapshot_2_oldX0_0 ≤ oldX0_0 ∧ oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| 22: | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
| : | __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 ∧ __snapshot_2_oldX0_0 ≤ __snapshot_2_oldX0_0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | TRUE | 
| 5: | TRUE | 
| 6: | TRUE | 
| 7: | TRUE | 
| 8: | TRUE | 
| : | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | 
| : | TRUE ∨ 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∨ − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | 
| : | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | 
| : | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | 
| : | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | 
| : | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | 
| : | 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∨ − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | 
The invariants are proved as follows.
| 0 | (8) | TRUE | ||
| 1 | (7) | TRUE | ||
| 2 | (0) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (1) | TRUE | ||
| 5 | (4) | TRUE | ||
| 6 | (5) | TRUE | ||
| 7 | (6) | TRUE | ||
| 8 | (2) | TRUE | ||
| 9 | (6) | TRUE | ||
| 10 | () | TRUE | ||
| 11 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
| 16 | (1) | TRUE | ||
| 17 | (2) | TRUE | ||
| 18 | (2) | TRUE | ||
| 19 | (1) | TRUE | ||
| 20 | (2) | TRUE | ||
| 21 | (0) | TRUE | ||
| 22 | (3) | TRUE | ||
| 23 | (4) | TRUE | ||
| 24 | (5) | TRUE | ||
| 25 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
| 26 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
| 27 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
| 28 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
| 29 | () | 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
| 30 | () | 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
| 31 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | ||
| 36 | (1) | TRUE | ||
| 37 | () | 1 − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 | ||
| 38 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
| 43 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 + x1_0 ≤ 0 ∧ 1 − __snapshot_2_x0_0 ≤ 0 ∧ 1 − __snapshot_2_x1_0 ≤ 0 | ||
| 44 | () | − __snapshot_2_x0_0 + x0_0 ≤ 0 ∧ − __snapshot_2_x1_0 + x1_0 ≤ 0 | 
| 4 | → 36 | Hint: auto | ||||
| 6 | → 24 | Hint: auto | ||||
| 9 | → 7 | Hint: auto | ||||
| 16 | → 36 | Hint: auto | ||||
| 17 | → 8 | Hint: auto | ||||
| 18 | → 8 | Hint: auto | ||||
| 19 | → 36 | Hint: auto | ||||
| 20 | → 8 | Hint: auto | ||||
| 21 | → 2 | Hint: auto | ||||
| 22 | → 3 | Hint: auto | ||||
| 23 | → 5 | Hint: auto | ||||
| 31 | → 11 | 
                  Hint:
                  
        distribute conclusion
  | 
||||
| 37 | → 29 | 
                  Hint:
                  
        distribute conclusion
  | 
||||
| 44 | → 11 | 
                  Hint:
                  
        distribute conclusion
  | 
| 0 | 18 1 | Hint: auto | ||||||||
| 1 | 11 2 | Hint: auto | ||||||||
| 1 | 12 3 | Hint: auto | ||||||||
| 1 | 13 4 | Hint: auto | ||||||||
| 1 | 14 5 | Hint: auto | ||||||||
| 1 | 15 6 | Hint: auto | ||||||||
| 1 | 16 7 | Hint: auto | ||||||||
| 1 | 17 8 | Hint: auto | ||||||||
| 2 | 0 16 | Hint: auto | ||||||||
| 2 | 1 17 | Hint: auto | ||||||||
| 2 | 2 18 | Hint: auto | ||||||||
| 3 | 3 19 | Hint: auto | ||||||||
| 3 | 4 20 | Hint: auto | ||||||||
| 5 | 5 21 | Hint: auto | ||||||||
| 5 | 6 22 | Hint: auto | ||||||||
| 7 | 8 23 | Hint: auto | ||||||||
| 7 | 9 24 | Hint: auto | ||||||||
| 8 | 10 9 | Hint: auto | ||||||||
| 8 | 19 10 | Hint: auto | ||||||||
| 10 | 20 11 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 11 | 25 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 24 | 7 36 | Hint: auto | ||||||||
| 25 | 26 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 26 | 27 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 26 | 28 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 27 | 37 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 27 | 38 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 28 | 29 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 29 | 22 30 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 30 | 20 31 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 38 | 22 43 | 
                  Hint:
                  
        distribute conclusion
  | 
||||||||
| 43 | 20 44 | 
                  Hint:
                  
        distribute conclusion
  | 
We remove transition 22 using the following lexicographic ranking functions, which are bounded by [−1, −1].
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| : | [x0_0, x1_0] | 
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| : | [__snapshot_2_x0_0, __snapshot_2_x1_0] | 
| 20 | 
        distribute assertion
  | 
||||||
| 22 | 
        distribute assertion
  | 
||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 20 using the following ranking functions, which are bounded by −9.
| : | −1 | 
| : | −2 | 
| : | −3 | 
| : | −4 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| 20 | 
        distribute assertion
  | 
||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert