LTS Termination Proof

by AProVE

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
l5 l5 l5: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l7 l7 l7: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l6 l6 l6: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l1 l1 l1: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l8 l8 l8: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l3 l3 l3: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l0 l0 l0: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
l2 l2 l2: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22
and for every transition t, a duplicate t is considered.

2 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

2.1 SCC Subproblem 1/3

Here we consider the SCC { l0, l2 }.

2.1.1 Transition Removal

We remove transition 2 using the following ranking functions, which are bounded by 0.

l0: −1 + x1x4
l2: −1 + x1x4

2.1.2 Transition Removal

We remove transition 5 using the following ranking functions, which are bounded by 0.

l2: 0
l0: −1

2.1.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.2 SCC Subproblem 2/3

Here we consider the SCC { l6, l1 }.

2.2.1 Transition Removal

We remove transition 9 using the following ranking functions, which are bounded by 0.

l1: x3
l6: x3

2.2.2 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by 0.

l1: 0
l6: −1

2.2.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.3 SCC Subproblem 3/3

Here we consider the SCC { l5, l3 }.

2.3.1 Transition Removal

We remove transition 4 using the following ranking functions, which are bounded by 0.

l5: x3
l3: x3

2.3.2 Transition Removal

We remove transition 7 using the following ranking functions, which are bounded by 0.

l5: 0
l3: −1

2.3.3 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

Tool configuration

AProVE