by T2Cert
| 0 | 0 | 1: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 2 | 1 | 3: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 4 | 2 | 5: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 6 | 3 | 7: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 8 | 4 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6 − k6_0 ≤ 0 ∧ −1 − j5_0 + j5_post ≤ 0 ∧ 1 + j5_0 − j5_post ≤ 0 ∧ j5_0 − j5_post ≤ 0 ∧ − j5_0 + j5_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 8 | 5 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + k6_0 ≤ 0 ∧ −1 − k6_0 + k6_post ≤ 0 ∧ 1 + k6_0 − k6_post ≤ 0 ∧ k6_0 − k6_post ≤ 0 ∧ − k6_0 + k6_post ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 7 | 6 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6 − j5_0 ≤ 0 ∧ −1 − i4_0 + i4_post ≤ 0 ∧ 1 + i4_0 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 | |
| 7 | 7 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + j5_0 ≤ 0 ∧ −1 + k6_post ≤ 0 ∧ 1 − k6_post ≤ 0 ∧ k6_0 − k6_post ≤ 0 ∧ − k6_0 + k6_post ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 5 | 8 | 10: | 6 − i4_0 ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 5 | 9 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + i4_0 ≤ 0 ∧ −1 + j5_post ≤ 0 ∧ 1 − j5_post ≤ 0 ∧ j5_0 − j5_post ≤ 0 ∧ − j5_0 + j5_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 9 | 10 | 8: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 3 | 11 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6 − j5_0 ≤ 0 ∧ −1 − i4_0 + i4_post ≤ 0 ∧ 1 + i4_0 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 | |
| 3 | 12 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + j5_0 ≤ 0 ∧ −1 − j5_0 + j5_post ≤ 0 ∧ 1 + j5_0 − j5_post ≤ 0 ∧ j5_0 − j5_post ≤ 0 ∧ − j5_0 + j5_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 1 | 13 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 6 − i4_0 ≤ 0 ∧ −1 + i4_post ≤ 0 ∧ 1 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 | |
| 1 | 14 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −5 + i4_0 ≤ 0 ∧ −1 + j5_post ≤ 0 ∧ 1 − j5_post ≤ 0 ∧ j5_0 − j5_post ≤ 0 ∧ − j5_0 + j5_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | |
| 11 | 15 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + i4_post ≤ 0 ∧ 1 − i4_post ≤ 0 ∧ i4_0 − i4_post ≤ 0 ∧ − i4_0 + i4_post ≤ 0 ∧ − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 | |
| 12 | 16 | 11: | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
The following invariants are asserted.
| 0: | TRUE | 
| 1: | TRUE | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | TRUE | 
| 5: | TRUE | 
| 6: | TRUE | 
| 7: | TRUE | 
| 8: | TRUE | 
| 9: | TRUE | 
| 10: | 6 − i4_0 ≤ 0 | 
| 11: | TRUE | 
| 12: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | TRUE | ||
| 9 | (9) | TRUE | ||
| 10 | (10) | 6 − i4_0 ≤ 0 | ||
| 11 | (11) | TRUE | ||
| 12 | (12) | TRUE | 
| 0 | 0 1 | |
| 1 | 13 4 | |
| 1 | 14 2 | |
| 2 | 1 3 | |
| 3 | 11 0 | |
| 3 | 12 2 | |
| 4 | 2 5 | |
| 5 | 8 10 | |
| 5 | 9 6 | |
| 6 | 3 7 | |
| 7 | 6 4 | |
| 7 | 7 9 | |
| 8 | 4 6 | |
| 8 | 5 9 | |
| 9 | 10 8 | |
| 11 | 15 0 | |
| 12 | 16 11 | 
| 0 | 17 | : | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
| 2 | 24 | : | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
| 4 | 31 | : | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
| 6 | 38 | : | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
| 9 | 45 | : | − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0 | 
We remove transitions , , , using the following ranking functions, which are bounded by −23.
| 12: | 0 | 
| 11: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| 5: | 0 | 
| 6: | 0 | 
| 7: | 0 | 
| 8: | 0 | 
| 9: | 0 | 
| 10: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −11 | 
| : | −16 | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
18 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
27 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
25 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
34 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
32 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
41 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
39 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
48 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
46 : − k6_post + k6_post ≤ 0 ∧ k6_post − k6_post ≤ 0 ∧ − k6_0 + k6_0 ≤ 0 ∧ k6_0 − k6_0 ≤ 0 ∧ − j5_post + j5_post ≤ 0 ∧ j5_post − j5_post ≤ 0 ∧ − j5_0 + j5_0 ≤ 0 ∧ j5_0 − j5_0 ≤ 0 ∧ − i4_post + i4_post ≤ 0 ∧ i4_post − i4_post ≤ 0 ∧ − i4_0 + i4_0 ≤ 0 ∧ i4_0 − i4_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , , , , , , }.
We remove transition using the following ranking functions, which are bounded by −60.
| : | 13 − 14⋅i4_0 | 
| : | 11 − 14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | 12 − 14⋅i4_0 | 
| : | 13 − 14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
| : | −14⋅i4_0 | 
We remove transition using the following ranking functions, which are bounded by −20.
| : | −1 − 4⋅j5_0 | 
| : | −3 − 4⋅j5_0 | 
| : | 3 − 4⋅j5_0 | 
| : | 1 − 4⋅j5_0 | 
| : | −4⋅j5_0 | 
| : | −4⋅j5_0 | 
| : | −2 − 4⋅j5_0 | 
| : | −4⋅j5_0 | 
| : | 2 − 4⋅j5_0 | 
| : | 4 − 4⋅j5_0 | 
| : | −4⋅j5_0 | 
| : | −4⋅j5_0 | 
We remove transition using the following ranking functions, which are bounded by −17.
| : | −6 − 3⋅k6_0 | 
| : | −8 − 3⋅k6_0 | 
| : | −2 − 3⋅k6_0 | 
| : | −4 − 3⋅k6_0 | 
| : | −1 − 3⋅k6_0 | 
| : | −3⋅k6_0 | 
| : | −7 − 3⋅k6_0 | 
| : | −5 − 3⋅k6_0 | 
| : | −3 − 3⋅k6_0 | 
| : | −1 − 3⋅k6_0 | 
| : | −3⋅k6_0 | 
| : | 1 − 3⋅k6_0 | 
We remove transitions 32, 34, 39, 41, 46, 48, , , , , using the following ranking functions, which are bounded by −9.
| : | −7 | 
| : | −9 | 
| : | −3 | 
| : | −5 | 
| : | −1 | 
| : | 1 | 
| : | −8 | 
| : | −6 | 
| : | −4 | 
| : | −2 | 
| : | 0 | 
| : | 2 | 
We consider 3 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , , , , , }.
We remove transition using the following ranking functions, which are bounded by −42.
| : | 9 − 10⋅i4_0 | 
| : | 9 − 10⋅i4_0 | 
| : | −10⋅i4_0 | 
| : | −10⋅i4_0 | 
| : | 9 − 10⋅i4_0 | 
| : | 10 − 10⋅i4_0 | 
| : | −10⋅i4_0 | 
| : | −10⋅i4_0 | 
We remove transition using the following ranking functions, which are bounded by −16.
| : | −5⋅j5_0 | 
| : | −2 − 5⋅j5_0 | 
| : | 1 − 3⋅j5_0 | 
| : | −3⋅j5_0 | 
| : | −1 − 5⋅j5_0 | 
| : | 12 − 5⋅j5_0 | 
| : | −3⋅j5_0 | 
| : | 2 − 3⋅j5_0 | 
We remove transitions 18, 25, 27, , , using the following ranking functions, which are bounded by −4.
| : | −2 | 
| : | −4 | 
| : | 2 | 
| : | 0 | 
| : | −3 | 
| : | −1 | 
| : | 1 | 
| : | 3 | 
We remove transition 20 using the following ranking functions, which are bounded by 0.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 1 | 
| : | 0 | 
| : | 0 | 
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert