by T2Cert
| 0 | 0 | 1: | 5 − i2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + i2_0 ≤ 0 ∧ j3_post ≤ 0 ∧ − j3_post ≤ 0 ∧ j3_0 − j3_post ≤ 0 ∧ − j3_0 + j3_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 3 | 2 | 0: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 3 | 4: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 1 | 4 | 5: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 6 | 5 | 7: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 8 | 6 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − l5_0 + l5_post ≤ 0 ∧ 1 + l5_0 − l5_post ≤ 0 ∧ l5_0 − l5_post ≤ 0 ∧ − l5_0 + l5_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 9 | 7 | 10: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 11 | 8 | 8: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 11 | 9 | 1: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 11 | 10 | 8: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 10 | 11 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − l5_0 ≤ 0 ∧ −1 − k4_0 + k4_post ≤ 0 ∧ 1 + k4_0 − k4_post ≤ 0 ∧ k4_0 − k4_post ≤ 0 ∧ − k4_0 + k4_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 10 | 12 | 11: | −4 + l5_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 7 | 13 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − k4_0 ≤ 0 ∧ −1 − j3_0 + j3_post ≤ 0 ∧ 1 + j3_0 − j3_post ≤ 0 ∧ j3_0 − j3_post ≤ 0 ∧ − j3_0 + j3_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 7 | 14 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + k4_0 ≤ 0 ∧ l5_post ≤ 0 ∧ − l5_post ≤ 0 ∧ l5_0 − l5_post ≤ 0 ∧ − l5_0 + l5_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 4 | 15 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − j3_0 ≤ 0 ∧ −1 − i2_0 + i2_post ≤ 0 ∧ 1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 | |
| 4 | 16 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + j3_0 ≤ 0 ∧ k4_post ≤ 0 ∧ − k4_post ≤ 0 ∧ k4_0 − k4_post ≤ 0 ∧ − k4_0 + k4_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 12 | 17 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ i2_post ≤ 0 ∧ − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 | |
| 13 | 18 | 12: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
The following invariants are asserted.
| 0: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 1: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 2: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 3: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 4: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 5: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 6: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 7: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 8: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 9: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 10: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 11: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | 
| 12: | TRUE | 
| 13: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 1 | (1) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 2 | (2) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 3 | (3) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 4 | (4) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 5 | (5) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 6 | (6) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 7 | (7) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 8 | (8) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 9 | (9) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 10 | (10) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 11 | (11) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
| 12 | (12) | TRUE | ||
| 13 | (13) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 1 | 4 5 | |
| 2 | 3 4 | |
| 3 | 2 0 | |
| 4 | 15 3 | |
| 4 | 16 6 | |
| 6 | 5 7 | |
| 7 | 13 2 | |
| 7 | 14 9 | |
| 8 | 6 9 | |
| 9 | 7 10 | |
| 10 | 11 6 | |
| 10 | 12 11 | |
| 11 | 8 8 | |
| 11 | 9 1 | |
| 11 | 10 8 | |
| 12 | 17 3 | |
| 13 | 18 12 | 
| 2 | 19 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
| 3 | 26 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
| 6 | 33 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
| 9 | 40 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
We remove transitions , , , , using the following ranking functions, which are bounded by −21.
| 13: | 0 | 
| 12: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| 6: | 0 | 
| 7: | 0 | 
| 8: | 0 | 
| 9: | 0 | 
| 10: | 0 | 
| 11: | 0 | 
| 1: | 0 | 
| 5: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −15 | 
| : | −16 | 
| 20 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 27 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 34 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 41 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
29 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
27 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
36 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
34 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
43 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
41 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , , , , , , , , , , , , }.
We remove transition using the following ranking functions, which are bounded by −6005.
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 + x1_0 | 
| : | 1200 − 1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | 800 − 1601⋅i2_0 | 
| : | −1601⋅i2_0 + 4⋅x1_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| : | −1601⋅i2_0 | 
| 20 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 22 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 27 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 29 | lexWeak[ [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 34 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 36 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 41 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| 43 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] , [0, 0, 0, 1, 0, 0, 1601, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexWeak[ [0, 0, 4, 0, 0, 0, 0, 0, 1601, 0, 1601, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | 
We remove transition using the following ranking functions, which are bounded by −5605.
| : | 800 − 1601⋅j3_0 + x1_0 + x1_post | 
| : | −1601⋅j3_0 + x1_0 + x1_post | 
| : | −1601⋅j3_0 + x1_0 | 
| : | −1601⋅j3_0 + x1_0 | 
| : | 400 − 1601⋅j3_0 | 
| : | −1601⋅j3_0 + x1_0 | 
| : | −1601⋅j3_0 + x1_post | 
| : | −1601⋅j3_0 + x1_0 | 
| : | −1601⋅j3_0 + x1_post | 
| : | 798 − 1601⋅j3_0 | 
| : | 800 − 1601⋅j3_0 + x1_post | 
| : | −1601⋅j3_0 + x1_0 + 4⋅x1_post | 
| : | −3 − 1601⋅j3_0 + 2⋅x1_0 | 
| : | 399 − 1601⋅j3_0 + x1_post | 
| : | −1601⋅j3_0 + x1_0 | 
| : | −400 − 1601⋅j3_0 + x1_0 + x1_post | 
| : | 400 − 1601⋅j3_0 | 
| : | −1601⋅j3_0 + x1_0 | 
| 20 | lexWeak[ [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 22 | lexWeak[ [0, 3, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 27 | lexWeak[ [0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 29 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 34 | lexWeak[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 36 | lexWeak[ [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 41 | lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| 43 | lexWeak[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | 
| lexWeak[ [1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 1601, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1601] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1601, 0, 0, 0, 0] , [0, 1, 0, 1, 0, 0, 1601, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by −23.
| : | −401⋅k4_0 + x1_0 | 
| : | 399 − 401⋅k4_0 − x1_0 | 
| : | −396 − 6⋅k4_0 + x1_post | 
| : | −398 − 6⋅k4_0 + x1_post | 
| : | −6⋅k4_0 | 
| : | −6⋅k4_0 | 
| : | −6⋅k4_0 | 
| : | −6⋅k4_0 | 
| : | −401⋅k4_0 − 2⋅x1_post | 
| : | 1 − 401⋅k4_0 − x1_0 | 
| : | −401⋅k4_0 − x1_0 + x1_post | 
| : | 1977 − 401⋅k4_0 | 
| : | −401⋅k4_0 − x1_0 | 
| : | 398 − 401⋅k4_0 − 2⋅x1_0 + x1_post | 
| : | 3 − 6⋅k4_0 | 
| : | 5 − 6⋅k4_0 | 
| : | −6⋅k4_0 | 
| : | −400 − 6⋅k4_0 + x1_post | 
| 20 | lexWeak[ [1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 22 | lexWeak[ [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 27 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 29 | lexWeak[ [0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 34 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 36 | lexWeak[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 41 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 43 | lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 2, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 1, 0, 0, 0, 0, 395, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 401, 0, 0, 0, 0] ] | 
We remove transitions 20, 22, 27, 29, 34, 36, , , , , , using the following ranking functions, which are bounded by −3201.
| : | −3⋅x1_0 | 
| : | −5⋅x1_post | 
| : | − x1_0 + 2⋅x1_post | 
| : | −3⋅x1_0 + 2⋅x1_post | 
| : | 3⋅x1_post | 
| : | 1200 | 
| : | 3⋅x1_post | 
| : | 3⋅x1_post | 
| : | −3201 | 
| : | −800 − 5⋅x1_post | 
| : | −1600 | 
| : | −400 − 3⋅x1_0 + 2⋅x1_post | 
| : | −8⋅x1_post | 
| : | − x1_0 − 5⋅x1_post | 
| : | 0 | 
| : | 2⋅x1_post | 
| : | 3⋅x1_0 | 
| : | 1200 | 
| 20 | lexStrict[ [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 22 | lexStrict[ [0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 27 | lexStrict[ [0, 3, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 29 | lexStrict[ [0, 0, 1, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 34 | lexStrict[ [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 36 | lexStrict[ [0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 41 | lexWeak[ [0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 43 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [2, 0, 0, 3, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [3, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by −4409.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −400 − 1202⋅l5_0 + x1_post | 
| : | −1202⋅l5_0 + 3⋅x1_post | 
| : | −1202⋅l5_0 + x1_0 | 
| : | −1202⋅l5_0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −1202⋅l5_0 − x1_0 + 3⋅x1_post | 
| : | −399 − 1202⋅l5_0 + x1_0 + 3⋅x1_post | 
| 41 | lexWeak[ [0, 0, 0, 1, 3, 0, 0, 1, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 43 | lexWeak[ [0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [2, 0, 1, 0, 0, 0, 0, 1202, 0, 1202, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 3, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 1202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 41, 43, , , , using the following ranking functions, which are bounded by −1601.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −400 | 
| : | −1200 | 
| : | −1601 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −4⋅x1_post | 
| : | −2⋅x1_0 | 
| 41 | lexStrict[ [0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 43 | lexStrict[ [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 4 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert