by T2Cert
0 | 0 | 1: | 5 − i2_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + i2_0 ≤ 0 ∧ j3_post ≤ 0 ∧ − j3_post ≤ 0 ∧ j3_0 − j3_post ≤ 0 ∧ − j3_0 + j3_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
3 | 2 | 0: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
2 | 3 | 4: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
1 | 4 | 5: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
6 | 5 | 7: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
8 | 6 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − l5_0 + l5_post ≤ 0 ∧ 1 + l5_0 − l5_post ≤ 0 ∧ l5_0 − l5_post ≤ 0 ∧ − l5_0 + l5_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
9 | 7 | 10: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
11 | 8 | 8: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
11 | 9 | 1: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
11 | 10 | 8: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
10 | 11 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − l5_0 ≤ 0 ∧ −1 − k4_0 + k4_post ≤ 0 ∧ 1 + k4_0 − k4_post ≤ 0 ∧ k4_0 − k4_post ≤ 0 ∧ − k4_0 + k4_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
10 | 12 | 11: | −4 + l5_0 ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 13 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − k4_0 ≤ 0 ∧ −1 − j3_0 + j3_post ≤ 0 ∧ 1 + j3_0 − j3_post ≤ 0 ∧ j3_0 − j3_post ≤ 0 ∧ − j3_0 + j3_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 14 | 9: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + k4_0 ≤ 0 ∧ l5_post ≤ 0 ∧ − l5_post ≤ 0 ∧ l5_0 − l5_post ≤ 0 ∧ − l5_0 + l5_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
4 | 15 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 5 − j3_0 ≤ 0 ∧ −1 − i2_0 + i2_post ≤ 0 ∧ 1 + i2_0 − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 | |
4 | 16 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −4 + j3_0 ≤ 0 ∧ k4_post ≤ 0 ∧ − k4_post ≤ 0 ∧ k4_0 − k4_post ≤ 0 ∧ − k4_0 + k4_post ≤ 0 ∧ − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
12 | 17 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ i2_post ≤ 0 ∧ − i2_post ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ x1_0 − x1_post ≤ 0 ∧ − x1_0 + x1_post ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 | |
13 | 18 | 12: | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
The following invariants are asserted.
0: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
1: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
2: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
3: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
4: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
5: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
6: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
7: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
8: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
9: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
10: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
11: | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 |
12: | TRUE |
13: | TRUE |
The invariants are proved as follows.
0 | (0) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
1 | (1) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
2 | (2) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
3 | (3) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
4 | (4) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
5 | (5) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
6 | (6) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
7 | (7) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
8 | (8) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
9 | (9) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
10 | (10) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
11 | (11) | −400 + x1_post ≤ 0 ∧ 400 − x1_post ≤ 0 ∧ −400 + x1_0 ≤ 0 ∧ 400 − x1_0 ≤ 0 | ||
12 | (12) | TRUE | ||
13 | (13) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 4 5 | |
2 | 3 4 | |
3 | 2 0 | |
4 | 15 3 | |
4 | 16 6 | |
6 | 5 7 | |
7 | 13 2 | |
7 | 14 9 | |
8 | 6 9 | |
9 | 7 10 | |
10 | 11 6 | |
10 | 12 11 | |
11 | 8 8 | |
11 | 9 1 | |
11 | 10 8 | |
12 | 17 3 | |
13 | 18 12 |
2 | 19 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
3 | 26 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
6 | 33 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
9 | 40 | : | − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −21.13: | 0 |
12: | 0 |
0: | 0 |
2: | 0 |
3: | 0 |
4: | 0 |
6: | 0 |
7: | 0 |
8: | 0 |
9: | 0 |
10: | 0 |
11: | 0 |
1: | 0 |
5: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −15 |
: | −16 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
22 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
20 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
29 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
27 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
36 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
34 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
43 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
41 : − x1_post + x1_post ≤ 0 ∧ x1_post − x1_post ≤ 0 ∧ − x1_0 + x1_0 ≤ 0 ∧ x1_0 − x1_0 ≤ 0 ∧ − l5_post + l5_post ≤ 0 ∧ l5_post − l5_post ≤ 0 ∧ − l5_0 + l5_0 ≤ 0 ∧ l5_0 − l5_0 ≤ 0 ∧ − k4_post + k4_post ≤ 0 ∧ k4_post − k4_post ≤ 0 ∧ − k4_0 + k4_0 ≤ 0 ∧ k4_0 − k4_0 ≤ 0 ∧ − j3_post + j3_post ≤ 0 ∧ j3_post − j3_post ≤ 0 ∧ − j3_0 + j3_0 ≤ 0 ∧ j3_0 − j3_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , , , , , , , , , , , , }.We remove transition
using the following ranking functions, which are bounded by −6005.: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 + x1_0 |
: | 1200 − 1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | 800 − 1601⋅i2_0 |
: | −1601⋅i2_0 + 4⋅x1_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
: | −1601⋅i2_0 |
We remove transition
using the following ranking functions, which are bounded by −5605.: | 800 − 1601⋅j3_0 + x1_0 + x1_post |
: | −1601⋅j3_0 + x1_0 + x1_post |
: | −1601⋅j3_0 + x1_0 |
: | −1601⋅j3_0 + x1_0 |
: | 400 − 1601⋅j3_0 |
: | −1601⋅j3_0 + x1_0 |
: | −1601⋅j3_0 + x1_post |
: | −1601⋅j3_0 + x1_0 |
: | −1601⋅j3_0 + x1_post |
: | 798 − 1601⋅j3_0 |
: | 800 − 1601⋅j3_0 + x1_post |
: | −1601⋅j3_0 + x1_0 + 4⋅x1_post |
: | −3 − 1601⋅j3_0 + 2⋅x1_0 |
: | 399 − 1601⋅j3_0 + x1_post |
: | −1601⋅j3_0 + x1_0 |
: | −400 − 1601⋅j3_0 + x1_0 + x1_post |
: | 400 − 1601⋅j3_0 |
: | −1601⋅j3_0 + x1_0 |
We remove transition
using the following ranking functions, which are bounded by −23.: | −401⋅k4_0 + x1_0 |
: | 399 − 401⋅k4_0 − x1_0 |
: | −396 − 6⋅k4_0 + x1_post |
: | −398 − 6⋅k4_0 + x1_post |
: | −6⋅k4_0 |
: | −6⋅k4_0 |
: | −6⋅k4_0 |
: | −6⋅k4_0 |
: | −401⋅k4_0 − 2⋅x1_post |
: | 1 − 401⋅k4_0 − x1_0 |
: | −401⋅k4_0 − x1_0 + x1_post |
: | 1977 − 401⋅k4_0 |
: | −401⋅k4_0 − x1_0 |
: | 398 − 401⋅k4_0 − 2⋅x1_0 + x1_post |
: | 3 − 6⋅k4_0 |
: | 5 − 6⋅k4_0 |
: | −6⋅k4_0 |
: | −400 − 6⋅k4_0 + x1_post |
We remove transitions 20, 22, 27, 29, 34, 36, , , , , , using the following ranking functions, which are bounded by −3601.
: | 1200 − 7⋅x1_0 |
: | 400 − 7⋅x1_0 |
: | 0 |
: | −6⋅x1_0 + 4⋅x1_post |
: | 800 |
: | 800 |
: | 2⋅x1_post |
: | 800 |
: | −1 − x1_0 − 8⋅x1_post |
: | −8⋅x1_post |
: | 800 − 7⋅x1_0 |
: | −7⋅x1_0 + 4⋅x1_post |
: | − x1_0 − 8⋅x1_post |
: | −7⋅x1_0 |
: | 2000 − 6⋅x1_0 |
: | − x1_0 + 2⋅x1_post |
: | 800 |
: | 2⋅x1_0 |
We remove transition
using the following ranking functions, which are bounded by 380.: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −5⋅l5_0 + x1_0 |
: | 3 − 5⋅l5_0 + x1_0 |
: | 1 − 5⋅l5_0 + x1_0 |
: | −5⋅l5_0 + x1_0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 402 − 5⋅l5_0 |
: | 4 − 5⋅l5_0 + x1_post |
We remove transitions 41, 43, , , , using the following ranking functions, which are bounded by −1201.
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −2⋅x1_post |
: | −4⋅x1_0 |
: | 1 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | −3⋅x1_0 |
: | −400 |
We consider 4 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert