by T2Cert
| 0 | 0 | 1: | 1 + x_5_0 − y_6_0 ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 1 | 1 | 2: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 2 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ 1 − y_6_0 + y_6_post ≤ 0 ∧ −1 + y_6_0 − y_6_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ y_6_0 − y_6_post ≤ 0 ∧ − y_6_0 + y_6_post ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 0 | 3 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 | |
| 5 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 3 | 5 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_5_0 − y_6_0 ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 ∧ −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 − x_5_0 + x_5_post ≤ 0 ∧ 1 + x_5_0 − x_5_post ≤ 0 ∧ b_7_0 − b_7_post ≤ 0 ∧ − b_7_0 + b_7_post ≤ 0 ∧ x_5_0 − x_5_post ≤ 0 ∧ − x_5_0 + x_5_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | |
| 3 | 6 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_5_0 + y_6_0 ≤ 0 ∧ Result_4_0 − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_post ≤ 0 ∧ − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 | |
| 6 | 7 | 5: | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | 
The following invariants are asserted.
| 0: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | 
| 1: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | 
| 2: | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | 
| 3: | b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 | 
| 4: | − b_7_post ≤ 0 ∧ − b_7_0 ≤ 0 | 
| 5: | TRUE | 
| 6: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
| 1 | (1) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
| 2 | (2) | −1 + b_7_post ≤ 0 ∧ 1 − b_7_post ≤ 0 ∧ −1 + b_7_0 ≤ 0 ∧ 1 − b_7_0 ≤ 0 | ||
| 3 | (3) | b_7_post ≤ 0 ∧ − b_7_post ≤ 0 ∧ b_7_0 ≤ 0 ∧ − b_7_0 ≤ 0 | ||
| 4 | (4) | − b_7_post ≤ 0 ∧ − b_7_0 ≤ 0 | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | TRUE | 
| 0 | 0 1 | |
| 0 | 3 4 | |
| 1 | 1 2 | |
| 2 | 2 3 | |
| 3 | 5 0 | |
| 3 | 6 4 | |
| 5 | 4 3 | |
| 6 | 7 5 | 
| 3 | 8 | : | − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0 | 
We remove transitions , , , using the following ranking functions, which are bounded by −13.
| 6: | 0 | 
| 5: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| : | −5 | 
| : | −6 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −7 | 
| : | −11 | 
| 9 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
11 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − y_6_post + y_6_post ≤ 0 ∧ y_6_post − y_6_post ≤ 0 ∧ − y_6_0 + y_6_0 ≤ 0 ∧ y_6_0 − y_6_0 ≤ 0 ∧ − x_5_post + x_5_post ≤ 0 ∧ x_5_post − x_5_post ≤ 0 ∧ − x_5_0 + x_5_0 ≤ 0 ∧ x_5_0 − x_5_0 ≤ 0 ∧ − b_7_post + b_7_post ≤ 0 ∧ b_7_post − b_7_post ≤ 0 ∧ − b_7_0 + b_7_0 ≤ 0 ∧ b_7_0 − b_7_0 ≤ 0 ∧ − Result_4_post + Result_4_post ≤ 0 ∧ Result_4_post − Result_4_post ≤ 0 ∧ − Result_4_0 + Result_4_0 ≤ 0 ∧ Result_4_0 − Result_4_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , }.
We remove transitions , using the following ranking functions, which are bounded by 1.
| : | 1 − 2⋅x_5_0 + 2⋅y_6_0 | 
| : | −2⋅x_5_0 + 2⋅y_6_0 | 
| : | −2⋅x_5_0 + 2⋅y_6_0 | 
| : | 1 − 2⋅x_5_0 + 2⋅y_6_0 | 
| : | −2⋅x_5_0 + 2⋅y_6_0 | 
| : | 2 − 2⋅x_5_0 + 2⋅y_6_0 | 
| 9 | lexWeak[ [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 11 | lexWeak[ [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transitions 9, 11, , using the following ranking functions, which are bounded by −2.
| : | 0 | 
| : | 1 + b_7_0 | 
| : | b_7_0 | 
| : | −1 | 
| : | −2 | 
| : | 0 | 
| 9 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 11 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert