by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − i_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post − i_0 ≤ 0 ∧ − i2_post + i_0 ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 3 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 4 | 3 | 5: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 5 | 4 | 3: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 6 | 5 | 0: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 7 | 6 | 4: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 7 | 7 | 4: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 7 | 8 | 5: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 8 | 9 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ r_0 − r_post ≤ 0 ∧ − r_0 + r_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 9 | 10 | 8: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 9 | 11 | 3: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 9 | 12 | 8: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 10 | 13 | 11: | 1 − i_0 ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 10 | 14 | 9: | i_0 ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 12 | 15 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 1 | 16 | 10: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 13 | 17 | 14: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 14 | 18 | 12: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 15 | 19 | 13: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 15 | 20 | 13: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 15 | 21 | 14: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 16 | 22 | 15: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 23 | 16: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 24 | 12: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 2 | 25 | 16: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 17 | 26 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
| 18 | 27 | 17: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
The following invariants are asserted.
| 0: | i_1 ≤ 0 ∧ − i_1 ≤ 0 | 
| 1: | i_1 ≤ 0 ∧ − i_1 ≤ 0 | 
| 2: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 3: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 4: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 5: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 6: | i_1 ≤ 0 ∧ − i_1 ≤ 0 | 
| 7: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 8: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 9: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | 
| 10: | i_1 ≤ 0 ∧ − i_1 ≤ 0 | 
| 11: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ 1 − i_0 ≤ 0 | 
| 12: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 13: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 14: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 15: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 16: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | 
| 17: | TRUE | 
| 18: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
| 1 | (1) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
| 2 | (2) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 3 | (3) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 4 | (4) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 5 | (5) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 6 | (6) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
| 7 | (7) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 8 | (8) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 9 | (9) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 | ||
| 10 | (10) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
| 11 | (11) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ 1 − i_0 ≤ 0 | ||
| 12 | (12) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 13 | (13) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 14 | (14) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 15 | (15) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 16 | (16) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_0 ≤ 0 ∧ i2_post ≤ 0 ∧ i2_0 ≤ 0 | ||
| 17 | (17) | TRUE | ||
| 18 | (18) | TRUE | 
| 0 | 0 1 | |
| 0 | 1 2 | |
| 1 | 16 10 | |
| 2 | 23 16 | |
| 2 | 24 12 | |
| 2 | 25 16 | |
| 3 | 2 1 | |
| 4 | 3 5 | |
| 5 | 4 3 | |
| 6 | 5 0 | |
| 7 | 6 4 | |
| 7 | 7 4 | |
| 7 | 8 5 | |
| 8 | 9 7 | |
| 9 | 10 8 | |
| 9 | 11 3 | |
| 9 | 12 8 | |
| 10 | 13 11 | |
| 10 | 14 9 | |
| 12 | 15 6 | |
| 13 | 17 14 | |
| 14 | 18 12 | |
| 15 | 19 13 | |
| 15 | 20 13 | |
| 15 | 21 14 | |
| 16 | 22 15 | |
| 17 | 26 6 | |
| 18 | 27 17 | 
| 1 | 28 | : | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
| 6 | 35 | : | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | 
We remove transitions , , , using the following ranking functions, which are bounded by −17.
| 18: | 0 | 
| 17: | 0 | 
| 0: | 0 | 
| 2: | 0 | 
| 6: | 0 | 
| 12: | 0 | 
| 13: | 0 | 
| 14: | 0 | 
| 15: | 0 | 
| 16: | 0 | 
| 1: | 0 | 
| 3: | 0 | 
| 4: | 0 | 
| 5: | 0 | 
| 7: | 0 | 
| 8: | 0 | 
| 9: | 0 | 
| 10: | 0 | 
| 11: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −8 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −10 | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
31 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
29 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
38 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
36 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , , , , }.
We remove transitions , , , , , , , , , using the following ranking functions, which are bounded by −8.
| : | 1 − 10⋅i_0 | 
| : | −7 − 10⋅i_0 | 
| : | −5 − 10⋅i_0 | 
| : | −6 − 10⋅i_0 | 
| : | −4 − 10⋅i_0 | 
| : | −3 − 10⋅i_0 | 
| : | −2 − 10⋅i_0 | 
| : | −1 − 10⋅i_0 | 
| : | −10⋅i_0 | 
| : | 2 − 10⋅i_0 | 
We remove transitions 29, 31, , using the following ranking functions, which are bounded by −3.
| : | −1 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 1 | 
| : | −3 | 
| : | −2 | 
| : | 0 | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , , , , , , , }.
We remove transitions , , , , , , , , , , using the following ranking functions, which are bounded by −6.
| : | 1 − 10⋅i_0 | 
| : | −10⋅i_0 | 
| : | 3 − 10⋅i_0 | 
| : | −5 − 10⋅i_0 | 
| : | −3 − 10⋅i_0 | 
| : | −4 − 10⋅i_0 | 
| : | −2 − 10⋅i_0 | 
| : | −1 − 10⋅i_0 | 
| : | 2 − 10⋅i_0 | 
| : | 4 − 10⋅i_0 | 
We remove transitions 36, 38 using the following ranking functions, which are bounded by −1.
| : | −2 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −1 | 
| : | 1 | 
We remove transition using the following ranking functions, which are bounded by 0.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | 1 | 
| : | 0 | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert