by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 100 − i_0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −99 + i_0 ≤ 0 ∧ i2_post − i_0 ≤ 0 ∧ − i2_post + i_0 ≤ 0 ∧ i2_0 − i2_post ≤ 0 ∧ − i2_0 + i2_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
3 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
4 | 3 | 5: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
5 | 4 | 3: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
6 | 5 | 0: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 6 | 4: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 7 | 4: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
7 | 8 | 5: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
8 | 9 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ r_0 − r_post ≤ 0 ∧ − r_0 + r_post ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
9 | 10 | 8: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
9 | 11 | 3: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
9 | 12 | 8: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
10 | 13 | 11: | 100 − i_0 ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
10 | 14 | 9: | −99 + i_0 ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
12 | 15 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
1 | 16 | 10: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
13 | 17 | 14: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
14 | 18 | 12: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
15 | 19 | 13: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
15 | 20 | 13: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
15 | 21 | 14: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
16 | 22 | 15: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
2 | 23 | 16: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
2 | 24 | 12: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
2 | 25 | 16: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
17 | 26 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 | |
18 | 27 | 17: | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
The following invariants are asserted.
0: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
1: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
2: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
3: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
4: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
5: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
6: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
7: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
8: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
9: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
10: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
11: | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ 100 − i_0 ≤ 0 |
12: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
13: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
14: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
15: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
16: | i_1 ≤ 0 ∧ − i_1 ≤ 0 |
17: | TRUE |
18: | TRUE |
The invariants are proved as follows.
0 | (0) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
1 | (1) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
2 | (2) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
3 | (3) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
4 | (4) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
5 | (5) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
6 | (6) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
7 | (7) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
8 | (8) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
9 | (9) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
10 | (10) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
11 | (11) | i_1 ≤ 0 ∧ − i_1 ≤ 0 ∧ 100 − i_0 ≤ 0 | ||
12 | (12) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
13 | (13) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
14 | (14) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
15 | (15) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
16 | (16) | i_1 ≤ 0 ∧ − i_1 ≤ 0 | ||
17 | (17) | TRUE | ||
18 | (18) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 16 10 | |
2 | 23 16 | |
2 | 24 12 | |
2 | 25 16 | |
3 | 2 1 | |
4 | 3 5 | |
5 | 4 3 | |
6 | 5 0 | |
7 | 6 4 | |
7 | 7 4 | |
7 | 8 5 | |
8 | 9 7 | |
9 | 10 8 | |
9 | 11 3 | |
9 | 12 8 | |
10 | 13 11 | |
10 | 14 9 | |
12 | 15 6 | |
13 | 17 14 | |
14 | 18 12 | |
15 | 19 13 | |
15 | 20 13 | |
15 | 21 14 | |
16 | 22 15 | |
17 | 26 6 | |
18 | 27 17 |
1 | 28 | : | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
6 | 35 | : | − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0 |
We remove transitions
, , , using the following ranking functions, which are bounded by −17.18: | 0 |
17: | 0 |
0: | 0 |
2: | 0 |
6: | 0 |
12: | 0 |
13: | 0 |
14: | 0 |
15: | 0 |
16: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
7: | 0 |
8: | 0 |
9: | 0 |
10: | 0 |
11: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −10 |
29 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
36 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
31 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
29 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
38 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
36 : − r_post + r_post ≤ 0 ∧ r_post − r_post ≤ 0 ∧ − r_0 + r_0 ≤ 0 ∧ r_0 − r_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_1 + i_1 ≤ 0 ∧ i_1 − i_1 ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − i2_post + i2_post ≤ 0 ∧ i2_post − i2_post ≤ 0 ∧ − i2_0 + i2_0 ≤ 0 ∧ i2_0 − i2_0 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , , , , }.We remove transition
using the following ranking functions, which are bounded by −992.: | 1 − 10⋅i_0 |
: | −7 − 10⋅i_0 |
: | −5 − 10⋅i_0 |
: | −6 − 10⋅i_0 |
: | −4 − 10⋅i_0 |
: | −3 − 10⋅i_0 |
: | −2 − 10⋅i_0 |
: | −1 − 10⋅i_0 |
: | −10⋅i_0 |
: | 2 − 10⋅i_0 |
29 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
31 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 10, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] , [0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
We remove transitions 29, 31, , , , , , , , , , , using the following ranking functions, which are bounded by −9.
: | −7 |
: | −5 |
: | −3 |
: | −4 |
: | −2 |
: | −1 |
: | 0 |
: | −9 |
: | −8 |
: | −6 |
29 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
31 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , , , , , , , }.We remove transition
using the following ranking functions, which are bounded by −990.: | 1 − 10⋅i_0 |
: | −10⋅i_0 |
: | 3 − 10⋅i_0 |
: | −5 − 10⋅i_0 |
: | −3 − 10⋅i_0 |
: | −4 − 10⋅i_0 |
: | −2 − 10⋅i_0 |
: | −1 − 10⋅i_0 |
: | 2 − 10⋅i_0 |
: | 4 − 10⋅i_0 |
36 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
38 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10] , [0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 10, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0] ] |
We remove transitions 36, 38, , , , , , , , , , , using the following ranking functions, which are bounded by −9.
: | −9 |
: | 0 |
: | −7 |
: | −5 |
: | −3 |
: | −4 |
: | −2 |
: | −1 |
: | −8 |
: | −6 |
36 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
38 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert