by T2Cert
| 0 | 0 | 1: | − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − tmp2_post + tmp2_post ≤ 0 ∧ tmp2_post − tmp2_post ≤ 0 ∧ − tmp2_0 + tmp2_0 ≤ 0 ∧ tmp2_0 − tmp2_0 ≤ 0 ∧ − tmp1_post + tmp1_post ≤ 0 ∧ tmp1_post − tmp1_post ≤ 0 ∧ − tmp1_0 + tmp1_0 ≤ 0 ∧ tmp1_0 − tmp1_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 2 | 1 | 0: | − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − tmp2_post + tmp2_post ≤ 0 ∧ tmp2_post − tmp2_post ≤ 0 ∧ − tmp2_0 + tmp2_0 ≤ 0 ∧ tmp2_0 − tmp2_0 ≤ 0 ∧ − tmp1_post + tmp1_post ≤ 0 ∧ tmp1_post − tmp1_post ≤ 0 ∧ − tmp1_0 + tmp1_0 ≤ 0 ∧ tmp1_0 − tmp1_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 2 | 2 | 0: | − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − tmp2_post + tmp2_post ≤ 0 ∧ tmp2_post − tmp2_post ≤ 0 ∧ − tmp2_0 + tmp2_0 ≤ 0 ∧ tmp2_0 − tmp2_0 ≤ 0 ∧ − tmp1_post + tmp1_post ≤ 0 ∧ tmp1_post − tmp1_post ≤ 0 ∧ − tmp1_0 + tmp1_0 ≤ 0 ∧ tmp1_0 − tmp1_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | |
| 3 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ j_0 − j_post ≤ 0 ∧ − j_0 + j_post ≤ 0 ∧ tmp1_0 − tmp1_post ≤ 0 ∧ − tmp1_0 + tmp1_post ≤ 0 ∧ tmp2_0 − tmp2_post ≤ 0 ∧ − tmp2_0 + tmp2_post ≤ 0 ∧ tmp3_0 − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_post ≤ 0 | |
| 4 | 4 | 3: | − tmp3_post + tmp3_post ≤ 0 ∧ tmp3_post − tmp3_post ≤ 0 ∧ − tmp3_0 + tmp3_0 ≤ 0 ∧ tmp3_0 − tmp3_0 ≤ 0 ∧ − tmp2_post + tmp2_post ≤ 0 ∧ tmp2_post − tmp2_post ≤ 0 ∧ − tmp2_0 + tmp2_0 ≤ 0 ∧ tmp2_0 − tmp2_0 ≤ 0 ∧ − tmp1_post + tmp1_post ≤ 0 ∧ tmp1_post − tmp1_post ≤ 0 ∧ − tmp1_0 + tmp1_0 ≤ 0 ∧ tmp1_0 − tmp1_0 ≤ 0 ∧ − j_post + j_post ≤ 0 ∧ j_post − j_post ≤ 0 ∧ − j_0 + j_0 ≤ 0 ∧ j_0 − j_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 | 
The following invariants are asserted.
| 0: | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | 
| 1: | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | 
| 2: | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | 
| 3: | TRUE | 
| 4: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | ||
| 1 | (1) | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | ||
| 2 | (2) | i_post ≤ 0 ∧ − i_post ≤ 0 ∧ −1 + j_post ≤ 0 ∧ 1 − j_post ≤ 0 ∧ i_0 ≤ 0 ∧ − i_0 ≤ 0 ∧ −1 + j_0 ≤ 0 ∧ 1 − j_0 ≤ 0 | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | 
| 0 | 0 1 | |
| 2 | 1 0 | |
| 2 | 2 0 | |
| 3 | 3 2 | |
| 4 | 4 3 | 
We remove transitions , , , , using the following ranking functions, which are bounded by −12.
| 4: | 0 | 
| 3: | 0 | 
| 2: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| : | −6 | 
| : | −7 | 
| : | −8 | 
| : | −9 | 
| : | −10 | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
There exist no SCC in the program graph.
T2Cert