by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −2 − x_0 + x_post ≤ 0 ∧ 2 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 0 | 1 | 1: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 2 | 2 | 3: | N_0 − i_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 2 | 3 | 0: | 1 − N_0 + i_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 4 | 4 | 2: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 5 | 5 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ tmp_post ≤ 0 ∧ − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 7 | 6 | 5: | 2 + N_0 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 7 | 7 | 5: | − N_0 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 7 | 8 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − N_0 + x_0 ≤ 0 ∧ 1 + N_0 − x_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ 1 − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 6 | 9 | 8: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 3 | 10 | 7: | 1 + N_0 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 3 | 11 | 7: | 1 − N_0 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 3 | 12 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − N_0 + x_0 ≤ 0 ∧ N_0 − x_0 ≤ 0 ∧ −1 + tmp_post ≤ 0 ∧ 1 − tmp_post ≤ 0 ∧ tmp_0 − tmp_post ≤ 0 ∧ − tmp_0 + tmp_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 1 | 13 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − i_0 + i_post ≤ 0 ∧ 1 + i_0 − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 9 | 14 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_post ≤ 0 ∧ − x_post ≤ 0 ∧ i_post ≤ 0 ∧ − i_post ≤ 0 ∧ i_0 − i_post ≤ 0 ∧ − i_0 + i_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 | |
| 10 | 15 | 9: | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | TRUE |
| 2: | TRUE |
| 3: | TRUE |
| 4: | TRUE |
| 5: | TRUE |
| 6: | −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 |
| 7: | TRUE |
| 8: | −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 |
| 9: | TRUE |
| 10: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | TRUE | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | −1 + tmp_post ≤ 0 ∧ −1 + tmp_0 ≤ 0 | ||
| 9 | (9) | TRUE | ||
| 10 | (10) | TRUE |
| 0 | 0 1 | |
| 0 | 1 1 | |
| 1 | 13 4 | |
| 2 | 2 3 | |
| 2 | 3 0 | |
| 3 | 10 7 | |
| 3 | 11 7 | |
| 3 | 12 6 | |
| 4 | 4 2 | |
| 5 | 5 6 | |
| 6 | 9 8 | |
| 7 | 6 5 | |
| 7 | 7 5 | |
| 7 | 8 6 | |
| 9 | 14 4 | |
| 10 | 15 9 |
| 4 | 16 | : | − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0 |
We remove transitions , , , , , , , , , , using the following ranking functions, which are bounded by −21.
| 10: | 0 |
| 9: | 0 |
| 0: | 0 |
| 1: | 0 |
| 2: | 0 |
| 4: | 0 |
| 3: | 0 |
| 7: | 0 |
| 5: | 0 |
| 6: | 0 |
| 8: | 0 |
| : | −9 |
| : | −10 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −11 |
| : | −12 |
| : | −13 |
| : | −14 |
| : | −15 |
| : | −16 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − tmp_post + tmp_post ≤ 0 ∧ tmp_post − tmp_post ≤ 0 ∧ − tmp_0 + tmp_0 ≤ 0 ∧ tmp_0 − tmp_0 ≤ 0 ∧ − i_post + i_post ≤ 0 ∧ i_post − i_post ≤ 0 ∧ − i_0 + i_0 ≤ 0 ∧ i_0 − i_0 ≤ 0 ∧ − N_0 + N_0 ≤ 0 ∧ N_0 − N_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , }.
We remove transition using the following ranking functions, which are bounded by 7.
| : | 1 + 6⋅N_0 − 6⋅i_0 |
| : | 6⋅N_0 − 6⋅i_0 |
| : | 2 + 6⋅N_0 − 6⋅i_0 |
| : | 4 + 6⋅N_0 − 6⋅i_0 |
| : | 3 + 6⋅N_0 − 6⋅i_0 |
| : | 5 + 6⋅N_0 − 6⋅i_0 |
We remove transitions 17, 19, , , , using the following ranking functions, which are bounded by −4.
| : | 1 |
| : | 0 |
| : | −4 |
| : | −2 |
| : | −3 |
| : | −1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert