by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + ret_returnOne2_post ≤ 0 ∧ 1 − ret_returnOne2_post ≤ 0 ∧ a_post − ret_returnOne2_post ≤ 0 ∧ − a_post + ret_returnOne2_post ≤ 0 ∧ a_0 − a_post ≤ 0 ∧ − a_0 + a_post ≤ 0 ∧ ret_returnOne2_0 − ret_returnOne2_post ≤ 0 ∧ − ret_returnOne2_0 + ret_returnOne2_post ≤ 0 | |
| 2 | 1 | 0: | − ret_returnOne2_post + ret_returnOne2_post ≤ 0 ∧ ret_returnOne2_post − ret_returnOne2_post ≤ 0 ∧ − ret_returnOne2_0 + ret_returnOne2_0 ≤ 0 ∧ ret_returnOne2_0 − ret_returnOne2_0 ≤ 0 ∧ − a_post + a_post ≤ 0 ∧ a_post − a_post ≤ 0 ∧ − a_1 + a_1 ≤ 0 ∧ a_1 − a_1 ≤ 0 ∧ − a_0 + a_0 ≤ 0 ∧ a_0 − a_0 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne2_post ≤ 0 ∧ 1 − ret_returnOne2_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne2_0 ≤ 0 ∧ 1 − ret_returnOne2_0 ≤ 0 |
| 2: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | −1 + a_post ≤ 0 ∧ −1 + ret_returnOne2_post ≤ 0 ∧ 1 − ret_returnOne2_post ≤ 0 ∧ 1 + a_1 ≤ 0 ∧ −1 − a_1 ≤ 0 ∧ −1 + a_0 ≤ 0 ∧ −1 + ret_returnOne2_0 ≤ 0 ∧ 1 − ret_returnOne2_0 ≤ 0 | ||
| 2 | (2) | TRUE |
| 0 | 0 1 | |
| 2 | 1 0 |
We remove transitions , using the following ranking functions, which are bounded by −8.
| 2: | 0 |
| 0: | 0 |
| 1: | 0 |
| : | −4 |
| : | −5 |
| : | −6 |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There exist no SCC in the program graph.
T2Cert