by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
| 1 | 1 | 0: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 2 | 2 | 0: | y_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 3 | 4 | 2: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 4 | 5 | 2: | − x_0 + z_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 4 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_0 − z_0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
| 5 | 7 | 4: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 6 | 8 | 4: | y_0 − z_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 6 | 9 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 + z_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 7 | 10 | 6: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 8 | 11 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
| 9 | 12 | 8: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | 
The following invariants are asserted.
| 0: | y_0 ≤ 0 | 
| 1: | y_0 ≤ 0 | 
| 2: | TRUE | 
| 3: | TRUE | 
| 4: | TRUE | 
| 5: | TRUE | 
| 6: | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | 
| 7: | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | 
| 8: | TRUE | 
| 9: | TRUE | 
The invariants are proved as follows.
| 0 | (0) | y_0 ≤ 0 | ||
| 1 | (1) | y_0 ≤ 0 | ||
| 2 | (2) | TRUE | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | TRUE | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | ||
| 7 | (7) | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | ||
| 8 | (8) | TRUE | ||
| 9 | (9) | TRUE | 
| 0 | 0 1 | |
| 1 | 1 0 | |
| 2 | 2 0 | |
| 2 | 3 3 | |
| 3 | 4 2 | |
| 4 | 5 2 | |
| 4 | 6 5 | |
| 5 | 7 4 | |
| 6 | 8 4 | |
| 6 | 9 7 | |
| 7 | 10 6 | |
| 8 | 11 6 | |
| 9 | 12 8 | 
| 0 | 13 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | 
| 2 | 20 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | 
| 4 | 27 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | 
| 6 | 34 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | 
We remove transitions , , , , using the following ranking functions, which are bounded by −23.
| 9: | 0 | 
| 8: | 0 | 
| 6: | 0 | 
| 7: | 0 | 
| 4: | 0 | 
| 5: | 0 | 
| 2: | 0 | 
| 3: | 0 | 
| 0: | 0 | 
| 1: | 0 | 
| : | −7 | 
| : | −8 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −9 | 
| : | −12 | 
| : | −12 | 
| : | −12 | 
| : | −12 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −15 | 
| : | −18 | 
| : | −18 | 
| : | −18 | 
| : | −18 | 
| 14 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 21 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 28 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 35 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
23 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
21 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
30 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
28 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
37 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
35 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 4 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 0.
| : | −2 + 4⋅x_0 | 
| : | 4⋅x_0 | 
| : | −3 + 4⋅x_0 | 
| : | −1 + 4⋅x_0 | 
| 14 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] | 
| 16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] | 
We remove transitions 14, using the following ranking functions, which are bounded by −3.
| : | −2 | 
| : | 0 | 
| : | −3 | 
| : | −1 | 
| 14 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 16 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition 16 using the following ranking functions, which are bounded by −1.
| : | −1 | 
| : | 0 | 
| : | 0 | 
| : | 0 | 
| 16 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 1.
| : | −1 + 4⋅y_0 | 
| : | 1 + 4⋅y_0 | 
| : | −2 + 4⋅y_0 | 
| : | 4⋅y_0 | 
| 21 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
| 23 | lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
We remove transitions 21, 23, using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | 2 | 
| : | −1 | 
| : | 1 | 
| 21 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 23 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 1.
| : | −1 − 4⋅x_0 + 4⋅z_0 | 
| : | 1 − 4⋅x_0 + 4⋅z_0 | 
| : | −2 − 4⋅x_0 + 4⋅z_0 | 
| : | −4⋅x_0 + 4⋅z_0 | 
| 28 | lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] | 
| 30 | lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] | 
| lexStrict[ [0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 4] ] | 
We remove transitions 28, 30, using the following ranking functions, which are bounded by −3.
| : | −2 | 
| : | 0 | 
| : | −3 | 
| : | −1 | 
| 28 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 30 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 1.
| : | −1 + 4⋅y_0 − 4⋅z_0 | 
| : | 1 + 4⋅y_0 − 4⋅z_0 | 
| : | −2 + 4⋅y_0 − 4⋅z_0 | 
| : | 4⋅y_0 − 4⋅z_0 | 
| 35 | lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
| 37 | lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0] ] | 
We remove transitions 35, 37 using the following ranking functions, which are bounded by −2.
| : | −1 | 
| : | 1 | 
| : | −2 | 
| : | 0 | 
| 35 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| 37 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We remove transition using the following ranking functions, which are bounded by −1.
| : | 0 | 
| : | 0 | 
| : | 0 | 
| : | −1 | 
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | 
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert