by T2Cert
| 0 | 0 | 1: | 1 + y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 0 | 1 | 1: | oy_0 − y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 2 | 2 | 0: | 1 + x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 2 | 3 | 0: | ox_0 − x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 2 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 4 | 5 | 3: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 4 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ ox_post − x_0 ≤ 0 ∧ − ox_post + x_0 ≤ 0 ∧ oy_post − y_0 ≤ 0 ∧ − oy_post + y_0 ≤ 0 ∧ −1 + c_post ≤ 0 ∧ 1 − c_post ≤ 0 ∧ c_0 − c_post ≤ 0 ∧ − c_0 + c_post ≤ 0 ∧ ox_0 − ox_post ≤ 0 ∧ − ox_0 + ox_post ≤ 0 ∧ oy_0 − oy_post ≤ 0 ∧ − oy_0 + oy_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
| 5 | 7 | 4: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 5 | 8 | 2: | 1 − c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 6 | 9 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 6 | 10 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 3 | 11 | 6: | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 7 | 12 | 3: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
| 8 | 13 | 7: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 |
The following invariants are asserted.
| 0: | 1 − c_0 ≤ 0 |
| 1: | 1 − c_0 ≤ 0 |
| 2: | 1 − c_0 ≤ 0 |
| 3: | TRUE |
| 4: | c_0 ≤ 0 |
| 5: | TRUE |
| 6: | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 |
| 7: | TRUE |
| 8: | TRUE |
The invariants are proved as follows.
| 0 | (0) | 1 − c_0 ≤ 0 | ||
| 1 | (1) | 1 − c_0 ≤ 0 | ||
| 2 | (2) | 1 − c_0 ≤ 0 | ||
| 3 | (3) | TRUE | ||
| 4 | (4) | c_0 ≤ 0 | ||
| 5 | (5) | TRUE | ||
| 6 | (6) | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 | ||
| 7 | (7) | TRUE | ||
| 8 | (8) | TRUE |
| 0 | 0 1 | |
| 0 | 1 1 | |
| 2 | 2 0 | |
| 2 | 3 0 | |
| 2 | 4 3 | |
| 3 | 11 6 | |
| 4 | 5 3 | |
| 4 | 6 3 | |
| 5 | 7 4 | |
| 5 | 8 2 | |
| 6 | 9 5 | |
| 6 | 10 5 | |
| 7 | 12 3 | |
| 8 | 13 7 |
| 3 | 14 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 |
We remove transitions , , , , , using the following ranking functions, which are bounded by −15.
| 8: | 0 |
| 7: | 0 |
| 2: | 0 |
| 3: | 0 |
| 4: | 0 |
| 5: | 0 |
| 6: | 0 |
| 0: | 0 |
| 1: | 0 |
| : | −6 |
| : | −7 |
| : | −8 |
| : | −8 |
| : | −8 |
| : | −8 |
| : | −8 |
| : | −8 |
| : | −8 |
| : | −9 |
| : | −10 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − oy_post + oy_post ≤ 0 ∧ oy_post − oy_post ≤ 0 ∧ − oy_0 + oy_0 ≤ 0 ∧ oy_0 − oy_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , , , , }.
We remove transitions , , using the following ranking functions, which are bounded by 9.
| : | −1 + 9⋅x_0 + 9⋅y_0 |
| : | −3 + 9⋅x_0 + 9⋅y_0 |
| : | −2 + 9⋅x_0 + 9⋅y_0 |
| : | 9⋅x_0 + 9⋅y_0 |
| : | −8 + 9⋅x_0 + 9⋅y_0 |
| : | −4 + 9⋅x_0 + 9⋅y_0 |
| : | −2 + 9⋅x_0 + 9⋅y_0 |
We remove transitions 15, 17, , , , , using the following ranking functions, which are bounded by −4.
| : | −1 |
| : | −3 |
| : | −1 |
| : | 0 |
| : | 0 |
| : | −4 |
| : | −2 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert