by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x_0 ≤ 0 ∧ − x_0 + x_post + 3⋅y_0 ≤ 0 ∧ x_0 − x_post − 3⋅y_0 ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 | |
1 | 1 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ 1 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
3 | 3 | 2: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
The following invariants are asserted.
0: | −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
1: | −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
1 | (1) | −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 0 | |
2 | 2 0 | |
3 | 3 2 |
0 | 4 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.3: | 0 |
2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
5 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
5 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_0_y_post is introduced. The transition formulas are extended as follows:
5: | __snapshot_0_y_post ≤ y_post ∧ y_post ≤ __snapshot_0_y_post |
7: | __snapshot_0_y_post ≤ __snapshot_0_y_post ∧ __snapshot_0_y_post ≤ __snapshot_0_y_post |
: | __snapshot_0_y_post ≤ __snapshot_0_y_post ∧ __snapshot_0_y_post ≤ __snapshot_0_y_post |
: | __snapshot_0_y_post ≤ __snapshot_0_y_post ∧ __snapshot_0_y_post ≤ __snapshot_0_y_post |
The new variable __snapshot_0_y_0 is introduced. The transition formulas are extended as follows:
5: | __snapshot_0_y_0 ≤ y_0 ∧ y_0 ≤ __snapshot_0_y_0 |
7: | __snapshot_0_y_0 ≤ __snapshot_0_y_0 ∧ __snapshot_0_y_0 ≤ __snapshot_0_y_0 |
: | __snapshot_0_y_0 ≤ __snapshot_0_y_0 ∧ __snapshot_0_y_0 ≤ __snapshot_0_y_0 |
: | __snapshot_0_y_0 ≤ __snapshot_0_y_0 ∧ __snapshot_0_y_0 ≤ __snapshot_0_y_0 |
The new variable __snapshot_0_x_post is introduced. The transition formulas are extended as follows:
5: | __snapshot_0_x_post ≤ x_post ∧ x_post ≤ __snapshot_0_x_post |
7: | __snapshot_0_x_post ≤ __snapshot_0_x_post ∧ __snapshot_0_x_post ≤ __snapshot_0_x_post |
: | __snapshot_0_x_post ≤ __snapshot_0_x_post ∧ __snapshot_0_x_post ≤ __snapshot_0_x_post |
: | __snapshot_0_x_post ≤ __snapshot_0_x_post ∧ __snapshot_0_x_post ≤ __snapshot_0_x_post |
The new variable __snapshot_0_x_0 is introduced. The transition formulas are extended as follows:
5: | __snapshot_0_x_0 ≤ x_0 ∧ x_0 ≤ __snapshot_0_x_0 |
7: | __snapshot_0_x_0 ≤ __snapshot_0_x_0 ∧ __snapshot_0_x_0 ≤ __snapshot_0_x_0 |
: | __snapshot_0_x_0 ≤ __snapshot_0_x_0 ∧ __snapshot_0_x_0 ≤ __snapshot_0_x_0 |
: | __snapshot_0_x_0 ≤ __snapshot_0_x_0 ∧ __snapshot_0_x_0 ≤ __snapshot_0_x_0 |
The following invariants are asserted.
0: | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
1: | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
: | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 ∨ 1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
: | 1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
: | − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − __snapshot_0_x_0 + x_0 − 3⋅y_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
: | 1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (2) | TRUE | ||
2 | (0) | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
3 | (1) | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
4 | ( | )1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
5 | ( | )− __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − __snapshot_0_x_0 + x_0 − 3⋅y_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
10 | (0) | 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
14 | ( | )1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
15 | ( | )1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
16 | ( | )1 − __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ − __snapshot_0_x_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 | ||
17 | ( | )− __snapshot_0_x_0 + x_0 ≤ 0 ∧ 1 − __snapshot_0_x_0 + x_0 − 3⋅y_0 ≤ 0 ∧ 1 − 3⋅y_0 ≤ 0 ∧ −1 + y_post ≤ 0 ∧ −1 + y_0 ≤ 0 |
10 | → 2 |
Hint:
distribute conclusion
|
||||||||||
17 | → 5 |
Hint:
distribute conclusion
|
0 | 3 1 | Hint: auto | ||||||||||
1 | 2 2 |
Hint:
distribute conclusion
|
||||||||||
2 | 0 3 |
Hint:
distribute conclusion
|
||||||||||
2 | 4 4 |
Hint:
distribute conclusion
|
||||||||||
3 | 1 10 |
Hint:
distribute conclusion
|
||||||||||
4 | 5 5 |
Hint:
distribute conclusion
|
||||||||||
5 | 14 |
Hint:
distribute conclusion
|
||||||||||
14 | 15 |
Hint:
distribute conclusion
|
||||||||||
15 | 7 16 |
Hint:
distribute conclusion
|
||||||||||
16 | 5 17 |
Hint:
distribute conclusion
|
We remove transition 7 using the following ranking functions, which are bounded by −2.
: | x_0 |
: | __snapshot_0_x_0 |
: | __snapshot_0_x_0 |
: | __snapshot_0_x_0 |
5 |
distribute assertion
|
||||
7 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] |
We remove transition 5 using the following ranking functions, which are bounded by −6.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
5 |
distribute assertion
|
||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert