(VAR X X1 X2 Y Z )
(RULES 
        sel(s(X), cons(Y, Z)) -> sel(X, activate(Z))
        sel(0, cons(X, Z)) -> X
        first(0, Z) -> nil
        first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z)))
        from(X) -> cons(X, n__from(s(X)))
        sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z))
        sel1(0, cons(X, Z)) -> quote(X)
        first1(0, Z) -> nil1
        first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z)))
        quote(n__0) -> 01
        quote1(n__cons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z)))
        quote1(n__nil) -> nil1
        quote(n__s(X)) -> s1(quote(activate(X)))
        quote(n__sel(X, Z)) -> sel1(activate(X), activate(Z))
        quote1(n__first(X, Z)) -> first1(activate(X), activate(Z))
        unquote(01) -> 0
        unquote(s1(X)) -> s(unquote(X))
        unquote1(nil1) -> nil
        unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z))
        fcons(X, Z) -> cons(X, Z)
        first(X1, X2) -> n__first(X1, X2)
        from(X) -> n__from(X)
        0 -> n__0
        cons(X1, X2) -> n__cons(X1, X2)
        nil -> n__nil
        s(X) -> n__s(X)
        sel(X1, X2) -> n__sel(X1, X2)
        activate(n__first(X1, X2)) -> first(X1, X2)
        activate(n__from(X)) -> from(X)
        activate(n__0) -> 0
        activate(n__cons(X1, X2)) -> cons(X1, X2)
        activate(n__nil) -> nil
        activate(n__s(X)) -> s(X)
        activate(n__sel(X1, X2)) -> sel(X1, X2)
        activate(X) -> X
        
)