ceta_eq: termination proof not accepted
1: error below switch to dependency pairs
1.1: error below the dependency graph processor
 1.1.1: error below the reduction pair processor
  1.1.1.1: error when applying the reduction pair processor with usable rules to remove from the DP problem
   pairs:
   
   a#(l, x, s(y), h) -> a#(l, x, y, s(h))
   a#(l, x, s(y), s(z)) -> a#(l, x, y, a(l, x, s(y), z))
   a#(l, x, s(y), s(z)) -> a#(l, x, s(y), z)
   a#(l, s(x), h, z) -> a#(l, x, z, z)
   rules:
   
   *(h, x) -> h
   *(x, h) -> h
   *(s(x), s(y)) -> s(+(+(*(x, y), x), y))
   +(x, h) -> x
   +(h, x) -> x
   +(s(x), s(y)) -> s(s(+(x, y)))
   +(+(x, y), z) -> +(x, +(y, z))
   a(h, h, h, x) -> s(x)
   a(l, x, s(y), h) -> a(l, x, y, s(h))
   a(l, x, s(y), s(z)) -> a(l, x, y, a(l, x, s(y), z))
   a(l, s(x), h, z) -> a(l, x, z, z)
   a(s(l), h, h, z) -> a(l, z, h, z)
   s(h) -> 1
   
    the pairs 
   a#(l, s(x), h, z) -> a#(l, x, z, z)
   
   could not apply the generic root reduction pair processor with the following
   SCNP-version with mu = MS and the level mapping defined by 
   pi(a#) = [(epsilon,0),(2,0)]
   polynomial interpretration over naturals with negative constants
   Pol(a#(x_1, x_2, x_3, x_4)) = 1
   Pol(s(x_1)) = 1 + x_1
   Pol(a(x_1, x_2, x_3, x_4)) = x_4 + x_3 + x_1
   Pol(h) = 0
   Pol(1) = 1
   problem when orienting DPs
   cannot orient pair a#(l, x, s(y), h) -> a#(l, x, y, s(h)) weakly:
   [(a#(l, x, s(y), h),0),(x,0)] >=mu [(a#(l, x, y, s(h)),0),(x,0)] could not be ensured