ceta_eq: termination proof not accepted
1: error below switch to dependency pairs
1.1: error below the dependency graph processor
 1.1.1: error when applying the reduction pair processor with usable rules to remove from the DP problem
  pairs:
  
  log#(s(s(x))) -> log#(s(quot(x, s(s(0)))))
  rules:
  
  if_minus(true, s(x), y) -> 0
  if_minus(false, s(x), y) -> s(minus(x, y))
  le(0, y) -> true
  le(s(x), 0) -> false
  le(s(x), s(y)) -> le(x, y)
  log(s(0)) -> 0
  log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
  minus(0, y) -> 0
  minus(s(x), y) -> if_minus(le(s(x), y), s(x), y)
  quot(0, s(y)) -> 0
  quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
  
   the pairs 
  log#(s(s(x))) -> log#(s(quot(x, s(s(0)))))
  
  could not apply the generic root reduction pair processor with the following
  SCNP-version with mu = MS and the level mapping defined by 
  pi(log#) = [(epsilon,0),(1,0)]
  Argument Filter: 
  pi(log#/1) = []
  pi(s/1) = [1]
  pi(quot/2) = 1
  pi(0/0) = []
  pi(minus/2) = 1
  pi(if_minus/3) = 2
  pi(le/2) = []
  pi(false/0) = []
  pi(true/0) = []
  
  RPO with the following precedence
  precedence(log#[1]) = 2
  precedence(s[1]) = 1
  precedence(0[0]) = 0
  precedence(le[2]) = 0
  precedence(false[0]) = 3
  precedence(true[0]) = 0
  
  precedence(_) = 0
  and the following status
  status(log#[1]) = lex
  status(s[1]) = lex
  status(0[0]) = lex
  status(le[2]) = lex
  status(false[0]) = lex
  status(true[0]) = lex
  
  status(_) = lex
  
  problem when orienting DPs
  cannot orient pair log#(s(s(x))) -> log#(s(quot(x, s(s(0))))) strictly:
  [(log#(s(s(x))),0),(s(s(x)),0)] >mu [(log#(s(quot(x, s(s(0))))),0),(s(quot(x, s(s(0)))),0)] could not be ensured