ceta_eq: termination proof not accepted
1: error below switch to dependency pairs
1.1: error below the dependency graph processor
 1.1.2: error when applying the reduction pair processor with usable rules to remove from the DP problem
  pairs:
  
  app#(mark(X1), X2) -> app#(X1, X2)
  app#(X1, mark(X2)) -> app#(X1, X2)
  app#(active(X1), X2) -> app#(X1, X2)
  app#(X1, active(X2)) -> app#(X1, X2)
  rules:
  
  active(app(nil, YS)) -> mark(YS)
  active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
  active(from(X)) -> mark(cons(X, from(s(X))))
  active(zWadr(nil, YS)) -> mark(nil)
  active(zWadr(XS, nil)) -> mark(nil)
  active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
  active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
  app(mark(X1), X2) -> app(X1, X2)
  app(X1, mark(X2)) -> app(X1, X2)
  app(active(X1), X2) -> app(X1, X2)
  app(X1, active(X2)) -> app(X1, X2)
  cons(mark(X1), X2) -> cons(X1, X2)
  cons(X1, mark(X2)) -> cons(X1, X2)
  cons(active(X1), X2) -> cons(X1, X2)
  cons(X1, active(X2)) -> cons(X1, X2)
  from(mark(X)) -> from(X)
  from(active(X)) -> from(X)
  mark(app(X1, X2)) -> active(app(mark(X1), mark(X2)))
  mark(nil) -> active(nil)
  mark(cons(X1, X2)) -> active(cons(mark(X1), X2))
  mark(from(X)) -> active(from(mark(X)))
  mark(s(X)) -> active(s(mark(X)))
  mark(zWadr(X1, X2)) -> active(zWadr(mark(X1), mark(X2)))
  mark(prefix(X)) -> active(prefix(mark(X)))
  prefix(mark(X)) -> prefix(X)
  prefix(active(X)) -> prefix(X)
  s(mark(X)) -> s(X)
  s(active(X)) -> s(X)
  zWadr(mark(X1), X2) -> zWadr(X1, X2)
  zWadr(X1, mark(X2)) -> zWadr(X1, X2)
  zWadr(active(X1), X2) -> zWadr(X1, X2)
  zWadr(X1, active(X2)) -> zWadr(X1, X2)
  
   the pairs 
  app#(active(X1), X2) -> app#(X1, X2)
  app#(X1, active(X2)) -> app#(X1, X2)
  
  could not apply the generic root reduction pair processor with the following
  SCNP-version with mu = MS and the level mapping defined by 
  pi(app#) = [(1,3),(2,1)]
  Argument Filter: 
  pi(app#/2) = 1
  pi(mark/1) = 1
  pi(active/1) = [1]
  
  RPO with the following precedence
  precedence(active[1]) = 0
  
  precedence(_) = 0
  and the following status
  status(active[1]) = lex
  
  status(_) = lex
  
  problem when orienting DPs
  cannot orient pair app#(mark(X1), X2) -> app#(X1, X2) weakly:
  [(mark(X1),3),(X2,1)] >=mu [(X1,3),(X2,1)] could not be ensured