
Certification of Complexity Proofs using CeTA
Martin Avanzini1, Christian Sternagel2, and René Thiemann2

1 Università di Bologna & INRIA, Sophia Antipolis, Italy
martin.avanzini@uibk.ac.at

2 University of Innsbruck, Austria
{christian.sternagel|rene.thiemann}@uibk.ac.at

Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting,
where certifiers support most available techniques. In complexity analysis, the situation is quite
different. Although tools support certification in principle, current certifiers implement only the
most basic technique, namely, suitably tamed versions of reduction orders. As a consequence,
only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified.
To improve upon this situation, we formalized a framework for the certification of modular
complexity proofs and incorporated it into CeTA. We report on this extension and present the
newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable
rules, and usable replacement maps), resulting in a significant increase in the number of certifiable
complexity proofs. During our work we detected conflicts in theoretical results as well as bugs
in existing complexity tools.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases complexity analysis, certification, match-bounds, weak dependency pairs,
dependency tuples, usable rules, usable replacement maps

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The last decade saw a wealth of techniques for automated termination tools. Closely followed
by techniques and tools for automated complexity analysis in recent years. In individual
proofs, such tools often apply several techniques in combination, making human inspection
ever more unrealistic, due to their sheer size. Moreover, the increasing power of automated
tools comes at the cost of amplified complexity, reducing reliability. Hence the interest in
automatic certification of termination and complexity proofs.

Whereas our certifier CeTA [17] is already able to certify most proofs generated by current
termination tools for term rewrite systems (TRSs), initial support for complexity proofs was
added only recently [16]. In this paper we present a significant extension of CeTA towards
the certification of complexity proofs. To this end, we formalized several techniques for
complexity analysis within the proof assistant Isabelle/HOL [13] as part of our formal library
IsaFoR.1 On top of these general results, we augmented CeTA by corresponding functions, that
check whether specific applications of techniques, encountered inside automatically generated
complexity proofs, are correct.

As a result, the power of CeTA for certifying complexity proofs has almost tripled in
comparison to last year [16], and more than 75% of all tool-generated proofs can be certified.

1 http://cl-informatik.uibk.ac.at/software/ceta

© Martin Avanzini and Christian Sternagel and René Thiemann;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://cl-informatik.uibk.ac.at/software/ceta
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Certification of Complexity Proofs using CeTA

Moreover, via certification we detected and fixed several bugs in current complexity tools,
some of which remained undetected for more than five years.

Contribution and Overview. After giving some preliminaries in Section 2, we present our
main contributions. In Section 3, we explain our formalization of a framework which admits
us to certify composite complexity proofs. At this point, we also report on conflicting notions
of basic complexity definitions in the literature. In Section 4 we describe our formalization
of the match-bounds technique. Here, the transition from termination to complexity results
was surprisingly easy. Concerning the integration of match-bounds for relative rewriting, we
provide a new example showing that two existing variants are incomparable. In Section 5, we
discuss our formalization of two dependency pair related techniques: weak dependency pairs
and dependency tuples. We chose to conduct the respective proofs using two slightly different
approaches—one focusing on contexts, the other on sets of positions—and comment on our
findings. In Section 6, we slightly generalized one variant of usable rules, and also support
another variant for innermost rewriting, for which we reused existing proofs from termination
analysis. Furthermore, we present a new theorem combining usable rules, usable replacement
maps, and argument filters. Finally, in Section 7, we discuss conducted experiments and
conclude.

All of the proofs that are presented (or omitted) in the following have been formalized
and made available as part of IsaFoR.

2 Preliminaries

We assume basic familiarity with term rewriting but shortly recall some basic notions and
notations that are used later on.

By T (F ,V) we denote the set of (first-order) terms w.r.t. a signature F and a set of
variables V , and by T (F) the set of ground terms. We write root(t) for the root symbol of a
non-variable term t. A (multihole) context is a term that may contain an arbitrary number of
holes, represented by the special symbol �. Replacing the holes in a given multihole context
C by terms t1, . . . , tn is written C[t1, . . . , tn]. (At this point it might be worth mentioning
that in our formalization we have to make sure that the number of holes in C corresponds to
the number of terms n. For simplicity’s sake we do not make this explicit in the remainder).
Whenever s = C[t] for some context C (with C 6= �), then t is called a (proper) subterm of
s. We write tσ for the application of a substitution σ to a term t.

A TRS R is a set of (rewrite) rules, where a rule `→ r is a pair of terms such that ` /∈ V
and only variables already occurring in ` are allowed in r. The defined symbols of R, written
D(R), are those that are roots of left-hand sides of its rules. We use Fun(·) to denote the set
of function symbols occurring in a given term, context, or TRS.

The standard way of uniquely referring to subterms is via positions, denoted by lists of
natural numbers. The subterm of a term t at position p is written t|p. We use ≤ for the
usual partial order on positions, and denote by p || q that positions p and q are parallel, i.e.,
incomparable by ≤. The strict part of ≤ is denoted by <.

There is a rewrite step from term s to term t w.r.t. the rewrite relation induced by TRS R,
denoted s −→R t, whenever there are C, σ, and `→ r ∈ R such that s = C[`σ] and t = C[rσ].
Equivalently, we say that s rewrites to t at position p, where p is the unique position of � in
C. The subterm `σ above is called an (R-)redex. Terms not containing any R-redexes are
called R-normal or normal forms, and we write NF(R) for the set of all R-normal forms. We
sometimes use the same notion not only for TRSs but also for sets of terms, since right-hand

M. Avanzini and C. Sternagel and R. Thiemann 3

sides of rules are irrelevant for the existence of redexes anyway.
For termination analysis Q-restricted rewriting (named after the additional parameter,

which is usually denoted Q) was introduced in order to cover full rewriting and innermost
rewriting (as well as variations that lie somewhere in between) under a single framework [8].
Here, a rewrite step C[`σ] Q−→R C[rσ] is a standard rewrite step C[`σ] −→R C[rσ] whose redex
`σ additionally satisfies the condition that all its proper subterms are Q-normal (in that way
standard rewriting is Q-restricted rewriting with empty Q and for innermost rewriting we
take the left-hand sides of R as Q). This proves convenient also for complexity analysis and
its notions of runtime complexity and innermost runtime complexity. Additionally, relative
rewrite systems S/W are important for complexity analysis, since these frequently arise as
intermediate problems within compound complexity proofs. Combined this leads to relative
Q-restricted rewriting, where by Q−→S/W , we denote the relation Q−→∗W · Q−→S · Q−→∗W .

3 A Framework for Modular Complexity Proofs

In complexity analysis of TRSs we are usually interested in the maximal number of steps
that are possible when starting from a given set of terms. To this end, the basic ingredient
of our formalization is the derivation bound (defined in theory Complexity; see also [16]),
where a function g constitutes a derivation bound of relation R w.r.t. starting elements
from S, written dbS

R(g), if and only if for every n and x ∈ S(n), g(n) bounds the maximal
number of R-steps when starting from x. The intuition is that S(n) contains “objects” of
size n. This, more or less, corresponds to the usual notion of complexity, e.g., Avanzini
and Moser [2] define cp(n, T,R) = max{dh(t, R) | ∃t ∈ T. |t| ≤ n}, where dh denotes the
derivation height of a term, and derivational complexity as well as runtime complexity
are obtained by suitably instantiating T and R. However, as argued earlier [16], using
the derivation bound g as argument avoids undefined situations that arise with the usual
definition. Whenever cp(n, T,R) is defined, we have dbS

R(g) with S(n) = {t ∈ T | |t| ≤ n}
and g(n) = cp(n, T,R), as well as h(n) ≥ cp(n, T,R) for all other derivation bounds h. That
is, our bounds are not tight, but arbitrary upper bounds.

Depending on the set of starting elements, we obtain the usual notions of derivational
complexity and runtime complexity, respectively. For the former we consider all terms of size
n w.r.t. a given signature F , whereas the latter is based on basic terms of size n. Given two
sets of function symbols D (defined symbols) and C (constructors), and a set of variables V,
the set of basic terms BT(D, C,V) consists of those terms which are rooted by a symbol from
D and where all arguments are terms of T (C,V). At this point we would like to mention that
there are conflicting notions of basic terms: Avanzini [1] defines basic terms only as ground
terms, intending that constructor ground terms correspond to values, and thus, basic terms
correspond to function application on input values. In contrast, Hirokawa and Moser [9] and
Noschinski et al. [14] use the above definition of basic terms. Since IsaFoR does not enforce
the restriction to ground terms, every derivation bound that is certified by CeTA also is valid
w.r.t. Avanzini’s notion of basic terms. However, there might be valid derivation bounds
w.r.t. the ground semantics which cannot be certified in the non-ground setting:

I Example 1. Let R = {f(f(x))→ g(x), g(x)→ f(f(x)), f(a)→ a}. Then there are only two
basic ground terms, f(a) and g(a). Since the longest innermost derivation starting from these
terms is of length 3, R has constant innermost runtime complexity w.r.t. ground basic terms.
But there is an infinite innermost derivation starting from the non-ground basic term g(x).

We adopt the following notions from Avanzini and Moser [2]. A (complexity) problem
P = 〈S/W,Q, T 〉 consists of two TRSs S, W, and two sets of terms Q, T . We asses the

4 Certification of Complexity Proofs using CeTA

complexity of a problem P by a (complexity) judgment of the form ` P : g, which is valid
whenever g is a bound for Q−→S/W -derivations starting from T . A (complexity) processor turns
a given judgment ` P : g into a (possibly empty) list of judgments ` P1 : g1, . . . ,` Pn : gn.
It is sound whenever the validity of each of ` Pi : gi also implies validity of ` P : g.

The problem P is called a runtime complexity problem if T = BT(D, C,V), with S and W
not defining any constructor C, i.e., D(S ∪W)∩C = ∅. The problem P is called an innermost
problem if NF(Q) ⊆ NF(S ∪W). In this case, Q−→S/W is a composition of innermost rewrite
steps with respect to S ∪W.

In the following example, we formulate a theorem by Korp and Zankl [19, Thm. 3.6]
within our framework.

I Example 2 (Split Processor). Consider a complexity problem P = 〈S1 ∪ S2/W,Q, T 〉 and
define P1 = 〈S1/S2 ∪W,Q, T 〉 and P2 = 〈S2/S1 ∪W,Q, T 〉. The split processor translates
the judgment ` P : g into the judgments ` P1 : g1 and ` P2 : g2, for functions g1 and g2
satisfying g(n) ≤ g1(n) + g2(n) for all natural numbers n. The split processor is sound.

It is used whenever rules S1 should be shifted from the strict into the weak component,
e.g., when applying match-bounds for relative rewriting or when using orderings. As an
example, a certificate for orderings demands the pair (�,%), the rules S1, and a proof for the
problem P2. Then CeTA internally invokes the split processor to convert P into the two new
problems P1 and P2, completely solves P1 (roughly, by checking S1 ⊆ � and S2 ∪W ⊆ %)
and continues to check the proof for P2. This explains why in Sections 4 and 6, both
match-bounds and orderings are presented as terminal complexity processors.

4 Match-Bounds

The match-bounds technique was introduced as termination method by Geser et al. [6]. We
shortly recapitulate the main underlying ideas, before explaining our formalization (theory
Matchbounds) and the necessary adaptations to use it for complexity analysis [18, 19].

First, the signature F is expanded where symbols are labeled by natural numbers,
i.e., F ′ = F × N. Moreover, there are auxiliary functions base : T (F ′,V) → T (F ,V),
liftd : T (F ,V)→ T (F ′,V), and lab : T (F ′,V)→ 2N, where base removes all labels of a term,
liftd labels all symbols of a term by d, and lab returns the set of labels of a term. For a
non-duplicating TRS R over signature F we construct the TRS R′ = match(R) over F ′.

match(R) = {`′ → liftd(r) | `→ r ∈ R, base(`′) = `, d = 1 + max(lab(`))} (1)

Then for left-linear R, every rewrite step s→R t can be simulated by a step s′ →R′ t′ with
base(t′) = t, provided base(s′) = s. Hence, every (possibly) infinite derivation (2) gives rise to
a step-wise simulation (3) provided base(t′0) = t0, which is ensured by choosing t′0 = lift0(t0).

t0 →R t1 →R t2 →R · · · (2)
t′0 →R′ t′1 →R′ t′2 →R′ · · · (3)

mul(t′0) >ms mul(t′1) >ms mul(t′2) >ms · · · (4)

As the next step, a function mul maps every term t′i to the multiset of negated labels, where
by construction of match(R) every step with R′ results in a strict decrease w.r.t. the standard
multiset-order >ms on the integers, and thus we can construct (4) from (3).

Since t′0 = lift0(t0), the initial term in (3) is always a member of T (F ×{0}). We now try
to find some bound b ∈ N, such that→∗R′(T (F × {0})) ⊆ T (F ×{0, . . . , b}). If this succeeds,
then the labels in derivation (3) are bounded by b, and hence, all numbers in (4) are in the

M. Avanzini and C. Sternagel and R. Thiemann 5

range −b, . . . , 0. Since > is well-founded on this domain, so is >ms. Hence, (4) cannot be
infinite, and therefore, also (3), and (2) cannot be infinite, proving termination of R.

In total, we formalized the following theorem for termination analysis.

I Theorem 3. If R is a non-duplicating, left-linear TRS over signature F , and there is some
language L satisfying →∗R′ (lift0(T (F))) ⊆ L ⊆ T (F × {0, . . . , b}), then R is terminating.

Here, non-duplication is essential in the step from (3) to (4), and left-linearity is required
to ensure the one-step simulation property (Lemma 4). The language L usually comes in the
form of a finite automaton which has been constructed via tree automata completion [5].

I Lemma 4. If R is left-linear, s→R t, and base(s′) = s, then there exists a term t such
that base(t′) = t and s′ →R′ t′.

The lemma is straightforward to prove on paper, and also its formalization posed no
difficulties. Actually, it is not even present in IsaFoR, since recently we adopted a more general
result by Korp and Middeldorp [11, Lemma 12], applying also to non-left-linear TRSs. It is
the essential ingredient to obtain (3) from (2).

Concerning the step from (3) to (4), in the formalization we already require the bound b
at this point. This allows us to include an index shift in mul, so that each label i is mapped
onto b− i ∈ N. Then the parameter > of >ms in (4) is the standard order on natural numbers.

In order to certify match-bounds proofs (which are required to contain L in the form of
an automaton), CeTA must be able to check left-linearity and non-duplication, as well as that
the given automaton indeed accepts all terms in →∗R′(T (F × {0})). For the latter, we make
use of earlier work by Felgenhauer and Thiemann [4], and for the former, we rounded off
Isabelle/HOL’s existing theory on multisets by algorithms for comparing multisets (since
a rule is non-duplicating if and only if the multiset of variables of its right-hand side is a
subset of the multiset of variables of its left-hand side).

In the remainder of this section, we adapt Theorem 3 and the corresponding formalization
towards complexity analysis, following Zankl and Korp [18, 19].

The first step is to integrate complexity bounds into (2), (3), and (4), starting from
(4). Given a term of size n, the initial value mul(t′0) is the multiset containing n times
the value b. However, this does not immediately give a nice bound on the length of (4),
since >ms does not impose any bound on the length of derivations w.r.t. the initial multiset:
{{1}} >ms {{0, . . . , 0}} >ms · · · >ms {{0}} >ms ∅. Thus, we replace >ms by >ms,k in (4), where
>ms,k is a bounded version of >ms such that at most k elements may be added in each
comparison: X >ms,k Y if and only if X = U ∪ V , Y = U ∪W , V >ms W , and |W | ≤ k.

Of course, we have to substitute >ms,k (with suitable k) for >ms in all previous proofs.
Doing so within the formalization was an easy task: take k ≥ 1 as the maximum size of
right-hand sides of R. After this adaptation, it is shown that the length of >ms,k-sequences
is linearly bounded, using a result by Dershowitz and Manna [3, page 191]. To be more
precise, we formalized that X >n

ms,k Y implies n ≤
∑

x∈X(k + 1)x, leading to the linear
bound: Recall, that mul(t′0) = {b, . . . , b} where the number of b’s is |t0|. Hence, sequence
(4) can be of length at most

∑
x∈mul(t′

0)(k + 1)x =
∑

1,...,|t0|(k + 1)b = (k + 1)b · |t0|. As
immediate consequence we conclude that also (3) and (2) are linearly bounded.

In total, we get the following result which is used in CeTA to check complexity proofs via
match-bounds, where Tgnd is the set of all ground terms in T . The restriction to ground
terms is possible at this point (in contrast to Example 1) as Q is ignored in the analysis.

6 Certification of Complexity Proofs using CeTA

I Theorem 5. Let P = 〈R/∅,Q, T 〉 be a complexity problem. If R is a non-duplicating and
left-linear TRS over signature F , and there is some language L satisfying →∗R′(lift0(Tgnd)) ⊆
L ⊆ T (F × {0, . . . , b}), then ` P : g for some g ∈ O(n).

The next step is to integrate relative rewriting. The main idea to handle weak rules
is to use a modified version of match, which only has to ensure a decrease w.r.t. the weak
multiset order ≥ms,k. To this end, Zankl and Korp [18] define match-rt as in (1) except that
d is e, provided lab(`′) is the singleton set {e} and |`| ≥ |r|. Hence, for some cases it is not
required to increase the labels at all, and thus, it is more likely that a bound on the labels
can be obtained. In order to integrate match-rt into IsaFoR we could mostly reuse or slightly
generalize the existing proofs.

Zankl and Korp give a further optimization of match-rt, integrating the bound b: match-rtb

is defined in the same way as match-rt, except that liftd(r) is replaced by liftmin(b,d)(r), which
results in even smaller labels than match-rt, but which is restricted to non-collapsing strict
rules. In total, we have formalized the following theorem.

I Theorem 6. Let P = 〈S/W,Q, T 〉 be a complexity problem. Let S ∪ W be a non-
duplicating and left-linear TRS over signature F , let R′ = match(S) ∪match-rt(W) or both
R′ = match(S)∪match-rtb(W) and S is non-collapsing. If there is some language L satisfying
→∗R′(lift0(Tgnd)) ⊆ L ⊆ T (F × {0, . . . , b}), then ` P : g for some g ∈ O(n).

When integrating match-rtb in the formalization, we encountered two problems. First, we
wanted to get rid of the choice in Theorem 6 and always use the better match-rtb variant.
The reason for this aim was that—while the non-collapsing condition on S appears inside
their proofs—Zankl and Korp [19] did not state that its absence violates the main theorem.
This is now shown by a counterexample.

I Example 7 (Non-collapsing condition required). Let S = {f(x)→ x} and W = {a→ f(a)}.
ForR′ = match(S)∪match-rt0(W) = {fi(x)→ x, ai → f0(a0)}, the language→∗R′(lift0(T (F)))
is exactly T (F × {0}). Without the non-collapsing condition within Theorem 6 one would
be able to conclude linear derivational complexity of S/W, a contradiction.

Hence, the choices in Theorem 6 are really incomparable, and for certification it would
be best to include both. Which brings us to the second problem: we did not want to copy
and paste the existing proof for match-rt, and then incorporate all the tiny modifications
that are required for match-rtb. Thus, in IsaFoR we defined an auxiliary relation covering all
of match, match-rt, and match-rtb, and formalized the main proof step only once.

Currently, CeTA always chooses match-rtb for non-collapsing S, and match-rt, otherwise—
the same as in current complexity tools.

5 Certifying Weak Dependency Pairs and Dependency Tuples

The dependency pair framework [8] is a popular setting for termination analysis. Since
dependency pairs (DPs for short) in their original definition are not suitable for ensuring
small (i.e., polynomial) derivation bounds [12], two variants have been developed. Hirokawa
and Moser [9] introduced weak dependency pairs (WDPs for short). In general however, one
cannot concentrate on counting WDP steps alone. Rather, one also has to take the number
of interleaved steps w.r.t. the original TRS into account. Overcoming this complication,
Noschinski et al. [14] introduced a variation, called dependency tuples (DTs for short). The
DT transformation is however only applicable to innermost problems and it is not complete,

M. Avanzini and C. Sternagel and R. Thiemann 7

so that (non-confluent) TRSs with polynomial complexity can be turned into complexity
problems of exponential complexity.

Both WDPs and DTs enjoy nice properties that enable us to restrict to usable rules and
limit the monotonicity requirements for reduction pairs, which we discuss later. Since the
two techniques are incomparable but both used in modern complexity tools, we provide a
formalization of either in IsaFoR. To be more precise, we have formalized the corresponding
complexity processors of Avanzini and Moser [2], which—unlike DPs—allow us to apply
WDPs and DTs also to relative problems.

As a case study, we decided to perform two different styles of proof: For DTs, we stuck
more to the original paper proof, where parallel positions are used to point to subterms
that are potential redexes; while for WDPs, we instead focused on contexts around potential
redexes. The former requires us to reason about valid positions, whereas the latter makes it
necessary to explicitly manage properties of contexts. Although both paper proofs are of
comparable length, in our formalization the theories on WDPs are around 30% shorter than
those on DTs (see also DT_Transformation(_Impl) and WDP_Transformation(_Impl)). We
suspect that this is not mere coincidence, but caused by the fact that contexts can be mostly
treated via explicit recursive functions, while positions require a different style of proof that
is not as amenable to automation.

For the remainder of this section, we fix a runtime complexity problem 〈S/W,Q, T 〉 over
signature F . For each f ∈ F , let f] be a function symbol fresh with respect to F . For a
term t we denote sharping its root symbol by](t), where](x) = x and](f(t1, . . . , tn)) =
f](t1, . . . , tn). Sharping is homomorphically extended to sets and lists of symbols and terms.

Weak Dependency Pairs

We start with our formalization of WDPs and their definition due to Hirokawa and Moser [9].

I Definition 8. Let R be a TRS with defined symbols D(R). For every rule `→ r ∈ R, let
WDP(` → r) denote the new rule](`) → COM(](u1), . . . ,](un)), where u1, . . . , un are the
maximal subterms of r that are either variables or have a root symbol in D(R). Then the
weak dependency pairs of R are defined by WDP(R) = {WDP(`→ r) | `→ r ∈ R}.

In the above definition COM denotes a “function” that assigns fresh function symbols of
appropriate arity (a common optimization is to omit such symbols in case the argument list
is singleton, i.e., COM(t) = t) to a given list of terms. The thusly generated symbols are
called compound symbols. Note that Definition 8 implies that for each rule `→ r there is a
unique ground context C such that r = C[u1, . . . , un]. This is captured by the following two
functions:

capD(t) =
{
� if t ∈ V or root(t) /∈ C
f(capD(t1), . . . , capD(tn)) if t = f(t1, . . . , tn) and f ∈ C

maxD(t) =
{
t if t ∈ V or root(t) /∈ C
maxD(t1), . . . ,maxD(tn) if t = f(t1, . . . , tn) and f ∈ C

where C is a set of symbols—which is supposed to contain the compound symbols and the
constructors of S ∪W—that is disjoint from sharped F -symbols and the defined symbols of
S ∪W, i.e., (D(S ∪W) ∪](F)) ∩ C = ∅. Intuitively, maxD(t) results in the list of maximal
subterms of t that are either variables or have a root not in C (the latter usually implies that
the root is a defined symbol; hence the notation), whereas capD(t) computes the surrounding

8 Certification of Complexity Proofs using CeTA

context. Together these two functions constitute a unique decomposition of a given term t,
satisfying the property t = (capD(t))[maxD(t)].

For certification we never actually have to construct the set of WDPs.2 Instead it suffices
to check whether a given pair of terms (p, q) constitutes a WDP for a given rule `→ r. This
is done via the predicate:

is-WDP(p, q)(`→ r) ←→ p =](`)∧ (∃C. ground(C)∧Fun(C) ⊆ C ∧ q = C[](maxD(r))])

In preparation for later results, we somehow ambiguously use WDP(R) for R ⊆ S ∪W to
denote an arbitrary set of rules (to be provided by the certificate) that is obligated to contain
a WDP for each rule in R, i.e.,

∀`→ r ∈ R.∃(p, q) ∈WDP(R). is-WDP(p, q)(`→ r) (5)

The main ingredient for soundness of WDPs is a simulation lemma that states that when
two terms are in a certain relation, then every R-rewrite sequence starting from the first
term can be simulated by a WDP(R)∪R-rewrite sequence starting from the second one. The
mentioned relation is crafted to fit the definition of WDPs. Intuitively, it relates terms whose
respective maximal defined subterms (computed by maxD) only differ by sharp symbols. We
write s1, . . . , sn ≤] t1, . . . , tn when for each i ≤ n we have that either si = ti or](si) = ti.
Then the informal statement from above can be formalized as follows.

I Definition 9. A term t is good for a term s, written t� s, if and only if Fun(s) ⊆ F and
there are a ground context C with Fun(C) ⊆ C and terms t1, . . . , tn such that maxD(s) ≤]

t1, . . . , tn and t = C[t1, . . . , tn].

We borrow the terminology good for from Avanzini [1], although the above definition
slightly differs from the original one. As indicated above, its intuition is that two related
terms have the same redexes (or rather an over-approximation, namely, subterms with defined
root) where in addition those in the left term may be sharped.

Before we state the main lemma, we give some useful properties of maxD.

I Lemma 10. Let t be a term with maxD(t) = t1, . . . , tn. Then:
1. If Fun(t) ⊆ F and maxD(t) ≤] u1, . . . , un, then maxD(ui) = ui for all i ≤ n.
2. If Fun(tσ) ⊆ F then maxD(tσ) ≤] maxD(](t1)σ), . . . ,maxD(](tn)σ).

In the main simulation lemma below, Q is extended to a set of terms Q′ taking extensions
of the signature F (by sharped and compound symbols) into account. In particular, the
assumption on Q′ ensures that innermost problems are translated to innermost problems,
thereby allowing a proof-in-progress to continue with techniques that are specific to the
innermost case. The following lemma shows that this does not pose any problems for
rewriting, where Q¬F = {f(t1, . . . , tn) | f /∈ F}.

I Lemma 11. Every term t with Fun(t) ⊆ F that is Q-normal is also Q′-normal for any
Q′ ⊆ Q ∪Q¬F .

Proof. Assume that t is not Q′-normal. Then t = C[`σ] for some C, σ, and ` ∈ Q′; thus
either ` ∈ Q, contradicting Q-normality, or ` ∈ Q¬F , contradicting Fun(t) ⊆ F . J

2 Which allows us to avoid a tedious formalization of COM that would have to manage the generation of
fresh symbols using a state monad or similar concept.

M. Avanzini and C. Sternagel and R. Thiemann 9

I Lemma 12. Let R ⊆ S ∪W and Q′ ⊆ Q ∪ Q¬F . If s Q−→R t and u � s then there is a
term v such that u Q

′
−−→WDP(R)∪R v and v � t.

Proof. From s Q−→R t we obtain ` → r ∈ R, σ, and C with s = C[`σ] and t = C[rσ].
Moreover, all proper subterms of `σ are Q-normal. Let s1, . . . , sn denote the result of
maxD(s). Since every redex has a defined root, and all subterms of s with defined root
are either contained in, or subterms of one of s1, . . . , sn, we further obtain a context D
such that si = D[`σ] for some i ≤ n. By Definition 9 and u � s, we get u1, . . . , un with
s1, . . . , sn ≤] u1, . . . , un and a ground contextD′ such that u = D′[u1, . . . , un] and Fun(D′) ⊆
C. Intuitively, it is easy to see that the above, together with Lemma 10(1), implies maxD(u) =
u1, . . . , un (although the corresponding formalization is somewhat tedious). Recall that s =
(capD(s))[s1, . . . , sn] and the considered redex is a subterm of si, thus t = (capD(s))[maxD(t)]
with maxD(t) = s1, . . . ,maxD(D[rσ]), . . . , sn. Moreover, from s1, . . . , sn ≤] u1, . . . , un we
have ui =](D[`σ]) ∨ ui = D[`σ] and thus proceed by case analysis:

Assume ui =](D[`σ]).
If D 6= �, then maxD(D[rσ]) = D[rσ] and capD(D[rσ]) = �. We define v =
(capD(u))[u1, . . . ,](D[rσ]), . . . , un]. Then, u Q′

−−→WDP(R)∪R v with the same rule
`→ r, justified by choosing the context (capD(u))[u1, . . . ,](D), . . . , un] and employing
Lemma 11. Moreover, v � t, by definition of v and maxD(t) ≤] u1, . . . ,](D[rσ]), . . . , un.
If D = �, then the WDP corresponding to ` → r is used. From (5), we obtain a
term q and a ground context E with (](`), q) ∈ WDP(R) and q = E[](maxD(r))].
Define v = (capD(u))[u1, . . . , qσ, . . . , un]. Then u Q′

−−→WDP(R)∪R v as witnessed by
u = (capD(u))[u1, . . . ,](`)σ, . . . , un]→ (capD(u))[u1, . . . , qσ, . . . , un] = v together with
Lemma 11 (and noting that u is a proper subterm of](`)σ if and only if u is a proper
subterm of `σ). Moreover, let maxD(r) = r1, . . . , rk, Ej = capD(](rj)σ), and vj =
maxD(](rj)σ) for all j ≤ k. Hence v � t, taking E′ = (capD(u))[. . . , E[E1, . . . , Ek], . . .]
and observing that v = E′[u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un] as well as maxD(t) ≤]

u1, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un. The latter follows from maxD(rσ) ≤] v1, . . . , vk,
which in turn is a consequence of Lemma 10(2) above.

Assume ui = D[`σ]. Then we can again employ the original rule ` → r. Let E =
(capD(u))[. . . , capD(D[rσ]), . . .] and v = E[u1, . . . , ui−1,maxD(D[rσ]), ui+1, . . . , un]. We
conclude u Q

′
−−→WDP(R)∪R v and v � t in a similar fashion as in the previous case. J

At this point, we obtain a simulation property for relative rewriting as an easy corollary.

I Corollary 13. u� s Q−→n
S/W t implies u Q

′
−−→n

WDP(S)∪S/WDP(W)∪W v � t for some v.

I Theorem 14 (WDP Processor). Let P = 〈S/W,Q, T 〉 be a runtime complexity problem.
Then the WDP processor transforms P into P ′ = 〈WDP(S)∪S/WDP(W)∪W,Q′,](T)〉 for
an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : g implies ` P : g.

Proof. Assume ` P ′ : g. Moreover, for the sake of a contradiction, assume that there is a
term s ∈ T of size n and a rewrite sequence s Q−→m

S/W t of length m > g(n). Since s ∈ T , we
have](s) ∈ T] and trivially](s)� s. Moreover, by Corollary 13, we obtain a term v with
](s) Q

′
−−→m

WDP(S)∪S/WDP(W)∪W v, thereby contradicting the initial complexity judgment. J

I Remark. Note that when P is an innermost problem, by setting Q′ = Q ∪](Q) the WDP
processor generates again an innermost problem. In contrast, Avanzini and Moser [1, 2] set
Q′ to Q, thereby not retaining the innermost status as claimed.

10 Certification of Complexity Proofs using CeTA

Dependency Tuples

According to Theorem 14, we cannot focus on applications of weak dependency pairs in
WDP(S) alone, but also have to account for applications of rules from S. This may have
severe consequences for a proof-in-progress. In the case of reduction pairs for instance, rather
strict monotonicity requirements have to be imposed even after the WDP transformation.
DTs overcome this weaknesses, but the corresponding transformation is sound only on
innermost problems. In contrast to WDPs, which capture outermost calls, a DT captures all
calls in a rule. The following definition is due to Noschinski et al. [14].

I Definition 15. Let R be a TRS with defined symbols D(R). For every rule `→ r ∈ R,
let DT(` → r) denote the new rule](`) → COM(](u1), . . . ,](un)), where u1, . . . un are all
subterms of r that have a root symbol in D(R). Then the dependency tuples of R are defined
by DT(R) = {DT(`→ r) | `→ r ∈ R}.

As for weak dependency pairs, our formalization uses a predicate to decide whether a
pair of terms (p, q) constitutes a dependency tuple of a rule `→ r. For a term t, let PosD(t)
denote the set of positions of subterms rooted by defined symbols of S ∪W.

is-DT(p, q)(`→ r) ←→
p =](`) ∧

(
∃C p1 . . . pn.PosD(r) = {p1, . . . , pk} ∧ q = C[](r|p1), . . . ,](r|pn

)]
)
.

In the following, we use the notation DT(R) where R ⊆ S ∪W, for a set satisfying

∀`→ r ∈ R.∃(p, q) ∈ DT(R). is-DT(p, q)(`→ r) . (6)

In the remainder, we provide a simulation lemma akin to Lemma 12 for DTs. For a
term s, let RPos(s) denote the restriction of PosD(s) to redex-positions. More precisely,
RPos(s) = {q ∈ PosD(s) | ∃t. s|q Q−→S∪W t}. Closely following the proof by Avanzini [1], we
use the following notion of good for.

I Definition 16. A term t is good for a term s, written t≫ s, if and only if Fun(s) ⊆ F and
there is a context C such that t = C[](s|q1), . . . ,](s|qk

)] for positions {q1, . . . , qk} = RPos(s).

We now show that each R-derivation of length n can be simulated by a corresponding
derivation of DT(R) relative to R, of length n. In the proof of the central simulation lemma,
we use the following key observations.

I Lemma 17. Let R ⊆ S ∪ W. Suppose s Q−→R t is a step at redex position p with rule
`→ r. Abbreviate P = {pq | q ∈ PosD(r)} and Q = {q ∈ RPos(s) | q < p ∨ q || p}. Then:
1. If NF(Q) ⊆ NF(S ∪W) then RPos(t) ⊆ P ∪Q;
2.](s|p) Q−→DT(R) C[](t|p1), . . . ,](t|pn)] for some context C and {p1, . . . , pn} = P ;
3.](s|q) Q−→∗R](t|q) for all positions q ∈ Q.

I Lemma 18. Let R ⊆ S ∪W, suppose NF(Q) ⊆ NF(S ∪W), and let Q′ ⊆ Q ∪ Q¬F . If
s Q−→R t and u≫ s, then there is a term v such that u Q

′
−−→∗R · Q

′
−−→DT(R) v and v≫ t.

Proof. Consider terms s, t and u with u≫ s Q−→R t. Let p denote the corresponding redex
position. Define a function f from positions in s to marked terms as follows: f(q) =](t|q) if
q < p or q || p and f(q) =](s|q) otherwise. Since u is good for s, by Definition 16 we obtain
a context C such that u = C[](s|q1), . . . ,](s|qk

)] for positions {q1, . . . , qk} = RPos(s). From
Lemma 17(3) and the definition of f we see that](s|qi

) Q−→∗R f(qi) (i = 1, . . . , k) holds. Since

M. Avanzini and C. Sternagel and R. Thiemann 11

Fun(sj) ⊆ F holds by assumption for all arguments of sj of](s|qi
), with Lemma 11 we can

refine these sequences to](s|qi
) Q

′
−−→∗R f(qi) (i = 1, . . . , k).

Observe that p ∈ RPos(s), i.e. p = qi for some i ∈ {1, . . . , k}. In particular](s|qi
) =

](s|p) = f(qi) by definition of f . Lemma 17(2) yields a context D such that f(qi) Q−→DT(R)
D[](t|p1), . . . ,](t|pn)], and consequently f(qi) Q

′
−−→DT(R) D[](t|p1), . . . ,](t|pn)], for positions

{p1, . . . , pn} = {pq | q ∈ PosD(r)}. Putting things together, we can thus construct a rewrite
sequence

C[](s|q1), . . . ,](s|qi), . . . ,](s|qk
)] Q

′
−−→∗R C[f(q1), . . . , f(qi), . . . , f(qk)]
Q′
−−→DT(R) C[f(q1), . . . , D[](t|p1), . . . ,](t|pn

)], . . . , f(qk)] .

Let v be the last term of this sequence. We claim that v is good for t. Abbreviate
Q = {q ∈ RPos(s) | q < p∨q || p}. Observe that by Lemma 17(1), RPos(t) ⊆ Q∪{p1, . . . , pn}
holds. Since in particular Q ⊆ {q1, . . . , qi−1, qi+1, . . . qk} and f(q) =](t|q) holds by definition
of f for all positions q ∈ Q, it is not difficult to see that v≫ t holds. J

The lemma is straightforward to generalize to relative Q-restricted rewrite sequences.

I Corollary 19. Suppose NF(Q) ⊆ NF(R∪S), and let Q′ ⊆ Q∪Q¬F . Then u≫ s Q−→n
S/W t

implies u Q
′
−−→n

DT(S)/DT(W)∪S∪W v≫ t for some v.

I Theorem 20 (DT Processor). Let P = 〈S/W,Q, T 〉 be an innermost runtime complexity
problem. Then the DT processor transforms P into P ′ = 〈DT(S)/DT(W)∪ S ∪W,Q′,](T)〉
for an arbitrary Q′ ⊆ Q ∪Q¬F , and ` P ′ : g implies ` P : g.

Proof. Soundness follows from Corollary 19, by reasoning similar to Theorem 14. J

6 Usable Rules and Usable Replacement Maps

Computing usable rules is a simple syntactic technique for innermost termination, detecting
that certain rules can never be applied in derivations starting from a given set of terms, and
may thus be discarded. While for termination analysis, we start from right-hand sides of
dependency pairs (instantiated by normal form substitutions); for complexity analysis, we
employ the corresponding set of starting terms. Existing results on innermost usable rules
for termination analysis made it quite easy to integrate usable rules for complexity analysis
into IsaFoR, cf. Usable_Rules_Complexity(_Impl) and Usable_Replacement_Map(_Impl).

Avanzini [1, Def. 14.44] as well as Hirokawa and Moser [9, Def. 14] define usable rules via
usable symbols. Our formalization simplifies and generalizes both definitions.

I Definition 21. Let US be the set of usable symbols and the set of starting terms T be
included in T (G,V) with G ⊆ US. Then U is a set of usable rules for S/W w.r.t. T , if

whenever `→ r ∈ S ∪W and Fun(`) ⊆ US, then `→ r ∈ U , and
whenever `→ r ∈ U then Fun(r) ⊆ US.

We believe the above definition to be simpler than previous ones, since we avoid reflexive
transitive closures and do not distinguish between dependency pairs and other rules. Still, it is
easy to check that Definition 21 simulates previous definitions, by choosing US = G ∪Fun(U),
where U is the set of usable rules as defined by Avanzini [1] and Hirokawa and Moser [9].
Moreover, Definition 21 is a generalization of the former, since all symbols of left-hand sides
are considered, as opposed to just root symbols.

12 Certification of Complexity Proofs using CeTA

I Example 22. Let S ∪ W = {f](g) → f](f(g)), g] → com, f(g) → f(f(g)), g → a} and
T = BT({f], g]}, {a},V). Then according to [1, 9] all rules are usable, whereas Definition 21
allows us to use G = {f], g], a}, US = {f], g], a, com} and obtain U = {g] → com}.

For soundness of usable rules it is easy to prove that every derivation starting from T
does only contain terms in T (US,V). Hence we can remove all non-usable rules.

I Theorem 23. If U is a set of usable rules for S/W w.r.t. T , then ` 〈S∩U/W∩U ,Q, T 〉 : g
implies ` 〈S/W,Q, T 〉 : g.

The whole formalization of this theorem via usable symbols, including definitions, occupies
only 100 lines, without having to reuse existing results on usable rules in IsaFoR. This is in
contrast to IsaFoR’s integration of the variant of usable rules used in AProVE, cf. the end of
Section 5.1 in [14]. Here, usable rules are based on unification and normal form checks, but
only work for innermost rewriting. In this part of the formalization, we heavily reused the
existing results for termination, and only little had to be added w.r.t. complexity analysis.
As an example, for complexity with its relative rewrite relation, it was required to switch
between a sequence of S/W-steps and a sequence that explicitly lists every single step in
each relative →∗W · →S · →∗W -step.

Since both variants of usable rules are incomparable, CeTA supports both. The certificate
just requires the set of usable rules. It is then automatically inferred which of the two variants
of usable rules is applicable.

Even less usable rules are obtained when employing argument filters from reduction pairs,
a well-known technique from termination analysis. This technique has already been adapted
for complexity, but we did not find any details in the literature. Thus, in the remainder of this
section, we clarify how usable rules, reduction pairs, argument filters, and usable replacement
maps can be combined. The upcoming theorem generalizes and improves existing complexity
results on reduction pairs ([1, Thm. 14.10], [10, Cor. 20], and [14, Thm. 26]), since usable
replacement maps can simulate safe reduction pairs of [10], cf. [1, Lemma 14.34].

Before presenting the main theorem, we first recapitulate the notion of usable replacement
maps ([1, Def. 14.5] and [10, Def. 8]). These mainly indicate a superset of all positions where
redexes may occur within terms of a derivation. To be more precise, for a replacement map
µ, two TRSs R and R′, and two sets of terms Q and T ; µ is a usable replacement map
(written URM(µ,Q,R, T ,R′)), if for all t ∈ T and t Q−→∗R s, all redexes of s w.r.t. Q−→R′ are
at µ-replacing positions of s.

Sufficient criteria to estimate usable replacement maps have been described in [10] for
full and innermost rewriting, and in [1, Lemma 14.34] for WDPs and DTs, where currently
CeTA only supports innermost rewriting, WDPs and DTs.

We will first present the main theorem, and then explain its ingredients and how to apply
it. Here, a complexity pair (�,%) consists of two partial orders which are both closed under
substitutions, which are compatible (% · � ·% ⊆ �) and where % is reflexive. A reduction
pair is a complexity pair where % is closed under contexts and � is strongly normalizing.

I Theorem 24. Let 〈S/W,Q, T 〉 be an innermost runtime complexity problem with T =
BT(D, C,V). Define R = S ∪W. Let µS , µW be replacement maps, let π be an argument
filter, let U be a set of usable rules, and let (�,%) be a complexity pair. If all of the following
conditions are satisfied, then ` 〈S/W,Q, T 〉 : g.
1. Whenever i /∈ π(f), then % ignores the i-th argument of f .
2. Both URM(µS ,Q,R, T ,S) and URM(µW ,Q,R, T ,W).
3. Whenever i ∈ µS(f) (µW(f)), then � (%) is monotone in the i-th argument of f .

M. Avanzini and C. Sternagel and R. Thiemann 13

4. S ∩ U ⊆ � and W ∩ U ⊆ %.
5. If `→ r ∈ P and ` ∈ T then `→ r ∈ U .
6. U is closed under right-hand sides of usable rules w.r.t. R for both µS and π ∩ µW .
7. ` 〈�/∅,∅, T 〉 : g

In the theorem, we have two replacement maps µS and µW for the strict and weak rules
as in [1, Thm. 14.10], but additionally there is the usual argument filter π indicating ignored
argument positions of % which is used to reduce the set of usable rules. Let us shortly walk
through all conditions of the theorem.
1. π is the standard argument filter as known from termination proofs via reduction pairs,

e.g., if [f(x1, x2, x3)] = 2x2 + 1
2x3, then π(f) = {2, 3}.

2. Both µS and µW are estimated usable replacement maps, which can be computed by
one of the methods above, where especially [1, Lemma 14.34] is often only applicable to
generate µS .

3. The maps µS and µW indicate at which positions redexes may occur, and hence the
corresponding orders � and % must be monotone w.r.t. these positions.

4. Only usable rules have to be oriented by the complexity pair.
5. In the generation of usable rules, one starts to include all rules which have basic terms

on their left-hand sides
6. and then performs the closure of usable rules w.r.t. an argument filter as in [15].
7. Finally, one extracts the derivation bound from the strict order �, and eventually derives

the same bound for the input complexity problem.

We included this theorem into CeTA, where in the certificate just the complexity pair
and the usable rules have to be provided, in combination with the strict rules for the split
processor of Example 2. Since currently IsaFoR only has an interface for reduction pairs the
latter condition in 3 does not have to be checked at runtime. All other information will be
automatically inferred. To this end, we had to modify our interface of reduction pairs which
now has to provide means of querying monotonicity of � w.r.t. specific positions.

Using this theorem, CeTA could now certify most combinations of applying a complexity pair
with usable rules and/or usable replacement maps in our experiments. Possible improvements
at this point are the inclusion of better estimations of usable replacement maps, and better
support for the complexity pairs itself, e.g., by removing the restriction to upper triangular
matrix interpretations.

7 Experiments

We have tested our new formalization in combination with the only two complexity tools
that apply several of the methods described in this paper: AProVE [7] (version 2015.01) and
TCT [2] (version 2.2). Both were run on the termination problem data base, version 9.0.2,3
which was also used for the complexity category of the FLoC Olympic Games of 2014. All
tests were conducted on a machine with 8 dual core AMD Opteron™ 885 processors running
at 2.60GHz on 64Gb of RAM and within a timeout of 60 seconds per test.

Table 1 collects our experimental findings.4 Here we show totals on estimated upper
bounds (from constant to polynomial of unknown degree) on runtime complexities w.r.t. full

3 The TPDB is available at http://termcomp.uibk.ac.at/.
4 Full experimental evidence can be found at http://cl-informatik.uibk.ac.at/software/ceta/

experiments/complexity/.

http://termcomp.uibk.ac.at/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/complexity/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/complexity/

14 Certification of Complexity Proofs using CeTA

Full Rewriting Innermost Rewriting
TCT TCT AProVE

certification full certification full certification full
new old new old new

constant 0 0 18 0 0 38 1 53
linear 134 67 182 234 117 278 159 249

quadratic 165 107 201 291 157 341 250 350
cubic 165 110 202 299 160 354 283 387

polynomial 165 110 203 301 160 361 283 387
Table 1 Experimental Results

and innermost rewriting, the former being only supported by TCT. To delineate the extend
of our new formalization, we have compared the tools when run in various modes:

In certification mode (columns certification new) we restrict tools to those methods that
can also be certified by CeTA version 2.19. We contrast this data with results obtained from
the version of TCT that ran in certification mode at the recent termination competition
(columns certification old). Note that until now, AProVE did not feature certification
support, consequently respective results are not present in the table.
In full mode (columns full) we show totals when tools are run in their default setting,
i.e., possibly employing methods that cannot be certified by CeTA.

Overall, the experiments confirm significant improvements of CeTA’s support for complexity
analysis. For instance, out of the 1066 examples, in conjunction with TCT we certified
polynomially bounded innermost runtime complexity of 301 systems. This corresponds to
83% of the systems that can be handled by TCT when run in full mode. In contrast, not
relying on our new formalizations TCT could handle only 44% of the systems. The statement
remains essentially correct for AProVE and TCT w.r.t. full rewriting.

Even more important might have been our preliminary experiments, where several proofs
have been rejected by CeTA. Although the reason have often just been bugs in the proof-
output of the tools, we also revealed and fixed (or at least reported to the developers) some
more severe problems: one tool modified the sets D and C in the set of starting terms
T = BT(D, C,V) when deleting rules by the usable rules processor in a way that made the
tool unnecessarily weak (and unsound for lower complexity bounds); one tool had a bug
when computing usable rules which could be exploited to generate linear derivation bounds
for non-terminating TRSs; and also some match-bounds certificates have been rejected where
the corresponding code had to be disabled. Finally, also the required adaptation of Q to
Q′ ⊆ Q∪Q¬F , as discussed in Section 5, was only detected by earlier versions of CeTA which
did not support this possibility.

Conclusion. We presented our formalization of several techniques for complexity analysis
that are now part of the formal library IsaFoR: match-bounds, weak dependency pairs,
dependency tuples, usable rules, and usable replacement maps. Moreover, we reported on
the resulting increase in power of our certifier CeTA, which is now able to certify more than
three quarters of all complexity proofs that are generated by state-of-the-art tools.

Acknowledgments. This work was partially supported by Austrian Science Fund (FWF)
projects Y757, J3563, and P27502. The authors are listed in alphabetical order regardless of

M. Avanzini and C. Sternagel and R. Thiemann 15

individual contributions or seniority.

References
1 M. Avanzini. Verifying Polytime Computability Automatically. PhD thesis, University of

Innsbruck, 2013. http://cl-informatik.uibk.ac.at/~zini/publications/diss.pdf.
2 M. Avanzini and G. Moser. A combination framework for complexity. In Proc. RTA’2013,

volume 21 of LIPIcs, pages 55–70, 2013. 10.4230/LIPIcs.RTA.2013.55.
3 N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Commun.

ACM, 22(8):465–476, 1979. 10.1145/359138.359142.
4 B. Felgenhauer and R. Thiemann. Reachability analysis with state-compatible automata.

In Proc. LATA’2014, volume 8370 of LNCS, pages 347–359, 2014. 10.1007/978-3-319-04921-
2_28.

5 G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability analysis over term rewriting
systems. J. Autom. Reasoning, 33:341–383, 2004. 10.1007/s10817-004-6246-0.

6 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. Inform. Comput., 205(4):512–534, 2007.
10.1016/j.ic.2006.08.007.

7 J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-
Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termination of programs
automatically with AProVE. In Proc. IJCAR’2014, volume 8562 of LNCS, pages 184–191,
2014. 10.1007/978-3-319-08587-6_13.

8 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Com-
bining techniques for automated termination proofs. In Proc. LPAR’2004, volume 3452 of
LNCS, pages 301–331, 2005. 10.1007/978-3-540-32275-7_21.

9 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In Proc. IJCAR’2008, volume 5195 of LNCS, pages 364–379, 2008. 10.1007/978-
3-540-71070-7_32.

10 N. Hirokawa and G. Moser. Automated complexity analysis based on context-sensitive
rewriting. In Proc. RTA-TLCA’2014, volume 8560 of LNCS, pages 257–271, 2014.
10.1007/978-3-319-08918-8_18.

11 M. Korp and A. Middeldorp. Match-bounds revisited. Inform. Comput., 207(11):1259–1283,
2009. 10.1016/j.ic.2009.02.010.

12 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair
method. Log. Meth. Comput. Sci., 7(3:1):1–38, 2011. 10.2168/LMCS-7(3:1)2011.

13 T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002. 10.1007/3-540-45949-9.

14 L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term
rewriting by dependency pairs. J. Autom. Reasoning, 51(1):27–56, 2013. 10.1007/s10817-
013-9277-6.

15 C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable rules. In
Proc. RTA’2010, volume 6 of LIPIcs, pages 325–340, 2010. 10.4230/LIPIcs.RTA.2010.325.

16 C. Sternagel and R. Thiemann. Formalizing monotone algebras for certification of termi-
nation and complexity proofs. In Proc. RTA-TLCA’2014, volume 8560 of LNCS, pages
441–455, 2014. 10.1007/978-3-319-08918-8_30.

17 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc.
TPHOLs’2009, volume 5674 of LNCS, pages 452–468, 2009. 10.1007/978-3-642-03359-9_31.

18 H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In Proc.
RTA’2010, volume 6 of LIPIcs, pages 385–400, 2010. 10.4230/LIPIcs.RTA.2010.385.

19 H. Zankl and M. Korp. Modular complexity analysis for term rewriting. Log. Meth. Comput.
Sci., 10(1:19):1–34, 2014. 10.2168/LMCS-10(1:19)2014.

http://cl-informatik.uibk.ac.at/~zini/publications/diss.pdf
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.55
http://dx.doi.org/10.1145/359138.359142
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1007/s10817-004-6246-0
http://dx.doi.org/10.1016/j.ic.2006.08.007
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-319-08918-8_18
http://dx.doi.org/10.1016/j.ic.2009.02.010
http://dx.doi.org/10.2168/LMCS-7(3:1)2011
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/s10817-013-9277-6
http://dx.doi.org/10.1007/s10817-013-9277-6
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.325
http://dx.doi.org/10.1007/978-3-319-08918-8_30
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.385
http://dx.doi.org/10.2168/LMCS-10(1:19)2014

	Introduction
	Preliminaries
	A Framework for Modular Complexity Proofs
	Match-Bounds
	Certifying Weak Dependency Pairs and Dependency Tuples
	Usable Rules and Usable Replacement Maps
	Experiments

