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Abstract10

The weighted path order (WPO) unifies and extends several termination proving techniques that are11

known in term rewriting. Consequently, the first tool implementing WPO could prove termination12

of rewrite systems for which all previous tools failed. However, we should not blindly trust such13

results, since there might be problems with the implementation or the paper proof of WPO.14

In this work, we increase the reliability of these automatically generated proofs. To this end, we15

first formally prove the properties of WPO in Isabelle/HOL, and then develop a verified algorithm16

to certify termination proofs that are generated by tools using WPO. We also include support for17

max-polynomial interpretations, an important ingredient in WPO. Here we establish a connection18

to an existing verified SMT solver. Moreover, we extend the termination tools NaTT and TTT2, so19

that they can now generate certifiable WPO proofs.20
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1 Introduction32

Automatically proving termination of term rewrite systems (TRSs) has been an active field33

of research for half a century. A number of simplification orders [13] are classic methods for34

proving termination, while more general pairs of orders called reduction pairs play a central35

role in the more modern dependency pair framework [19].36

The weighted path order (WPO) was first [51] introduced as a simplification order that37

unifies and extends classical ones, and then generalized to a reduction pair to further subsume38

more recent techniques [53]. The Nagoya Termination Tool (NaTT) [52] was originally39

developed solely to demonstrate the power of WPO. It participated in the full run of the40

2013 edition of the Termination Competition [18] and won the second place, closing 34 of41

159 then-open problems in the TRS Standard category. In 28 of them WPO was essential42

(the others are due to the efficiency of NaTT) [53].43
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termination analysis in literature
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Figure 1 Procedure for Certification of Termination Proofs via IsaFoR/CeTA

Despite the significance of the result, two natural questions arise: (1) “Is the theory44

of WPO correct?,” and if yes (2) “Is NaTT’s implementation of the theory correct?”. So45

far, nobody investigated the 34 proofs found by NaTT; these benchmarks are obtained via46

automatic transformations from other systems, and hence hard to analyze by hand (they47

have up to a few hundred of rules). In this work, we answer the two questions.48

To this end, we extend IsaFoR and CeTA [47]. The former, Isabelle Formalization of49

Rewriting, is an Isabelle/HOL [35]-formalized library of correctness proofs of analysis tech-50

niques for term rewriting and transition systems, and the latter, Certified Tool Assertions,51

is a verified Haskell code generated from IsaFoR that takes machine-readable output from52

untrusted verifiers and checks whether techniques are applied correctly. This workflow is53

illustrated in Figure 1.54

In this paper we describe two main extensions of IsaFoR and CeTA. After preliminaries we55

develop formal proofs of the properties of WPO being a reduction pair in Section 3. Here,56

we illustrate that one refinement of WPO provided in [53] breaks transitivity in a corner57

case, but we also show how to repair it by adding a mild precondition. Second, in Section 458

we formalize the max-polynomial interpretations that are used in [53] in a general manner.59

There we utilize our recently developed verified SMT solver for integer arithmetic [7, 8]. In60

Section 5 we give a short overview of a new XML parser implemented in Isabelle/HOL and61

the format for certificates of WPO and max-polynomial interpretations. In Section 6, we62

experimentally evaluate our extensions of CeTA. To this end, we extend NaTT to be able to63

output certificates introduced in the preceding section, and we also integrate WPO in the64

Tyrolean Termination Tool 2 (TTT2) [27]. Details on the experiments are provided at:65

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/66

This website also provides links to the formalization.67

Related Work68

There are plenty of work on orders for proving termination of rewriting. The earliest of such we69

know is the Knuth–Bendix order (KBO), introduced along with the Knuth–Bendix completion70

in their celebrated paper in 1970 [26]. In the same year, Manna and Ness [33] proposed a71

semantic approach, which nowadays is called interpretation methods. One instantiation of72

http://cl-informatik.uibk.ac.at/isafor/experiments/wpo/
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the approach is Lankford’s polynomial interpretations [30], which he also combined with73

KBO [31]. Dershowitz [14] initiated a purely syntactic approach called recursive path orders74

(RPO), where he also discovered the notion of simplification orders.75

The dependency pair method of Arts and Giesl [1] boosted the power of termination76

proving techniques, and around the same time many automated termination provers emerged:77

AProVE [17], TTT [21], CiME3 [10], Matchbox [49], muterm [32], TORPA [57], and so on. These78

tools have been evaluated in the Termination Competition [18] since 2004. These develop-79

ments, however, revealed that tool implementations are not blindly trustable: sometimes one80

tool claims a TRS terminating, while another claims the same TRS nonterminating.81

Hence certification came into play. Besides our IsaFoR/CeTA, we are aware of at least82

two other systems for certifying termination proofs of TRSs: Coccinelle/CiME3 [11] and83

CoLoR/Rainbow [6]. Here, Coccinelle and CoLoR are similar to IsaFoR: they are all formal84

libraries on rewriting, though the former two are in Coq [5] instead of Isabelle. Besides85

the choice of proof assistants, a significant difference is in the workflow when performing86

certification: CiME3 and Rainbow transform termination proofs into Coq files that reference87

their corresponding formal libraries, and then Coq does the final check, whereas in our case88

we just run the generated Haskell code CeTA outside of Isabelle.89

Within IsaFoR, most closely related to the current work is the previous formalization [46]90

of RPO, since RPO and WPO are similar in its structure. We refer to Section 3 for more91

details on how we exploit this similarity.92

We would also like to mention a few related work outside pure term rewriting. Recently93

a verified ordered resolution prover [36] has been developed as part of the IsaFoL project, the94

Isabelle Formalization of Logic. Currently the verified prover is based on KBO, which can95

be replaced by stronger and more general WPO. In fact, WPO is already utilized in the E96

theorem prover [24].97

In a recent work [8] IsaFoR became capable of certifying termination proofs for integer98

transition systems. This work eventually led to a verified SMT solver for linear integer99

arithmetic [7], which we now heavily utilize in the current work.100

2 Preliminaries101

2.1 Term Rewriting102

We assume familiarity with term rewriting [2], but briefly recall notions that are used in103

the following. A term built from signature F and set V of variables is either x ∈ V or of104

form f(t1, . . . , tn), where f ∈ F is n-ary and t1, . . . , tn are terms. A context C is a term105

with one hole, and C[t] is the term where the hole is replaced by t. The subterm relation D106

is defined by C[t] D t. A substitution is a function σ from variables to terms, and we write107

tσ for the instance of term t in which every variable x is replaced by σ(x). A term rewrite108

system (TRS) is a set R of rewrite rules, which are pairs of terms ` and r indicating that an109

instance of ` in a term can be rewritten to the corresponding instance of r. R is terminating110

if no term can be rewritten infinitely often.111

A reduction pair is a pair (�,%) of two relations on terms that satisfies the following112

requirements: � is well-founded, % and � are compatible (i.e., % ◦ � ◦ % ⊆ �), both113

are closed under substitutions, and % is closed under contexts. If � is also closed under114

context, then we call (�,%) a monotone reduction pair; a transitive relation � of a monotone115

reduction pair is called reduction order and used to directly prove termination by R ⊆ �,116

while reduction pairs are employed for termination proofs with dependency pairs. We write117

�lex and �mul for the lexicographic and multiset extension induced by (�,%), respectively.118
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A weakly monotone (F-)algebra A is a well-founded ordered set (A,>) equipped with an119

interpretation fA : An → A for every n-ary f ∈ F , such that fA(. . . , a, . . .) ≥ fA(. . . , b, . . .)120

whenever a ≥ b. Any weakly monotone algebra A induces a reduction pair (>A,≥A) defined121

by s ≥( )A t iff [[s]]αA ≥( ) [[t]]αA for all assignments α. Here, [[t]]αA denotes term evaluation in the122

algebra with respect to an assignment α : V → A.123

A (partial) status is a mapping π which assigns to each n-ary symbol f a list π(f) =124

[i1, . . . , im] of indices in {1, . . . , n}. Abusing notation, we also see π(f) as the set {i1, . . . , im},125

and as an operation on n-ary lists defined by π(f)[t1, . . . , tn] = [ti1 , . . . , tim ].126

A binary relation � over terms is simple with respect to status π, if f(t1, . . . , tn) � ti for127

all i ∈ π(f). It is simple, if it is simple independent of the status. In particular, a simple128

reduction order is called a simplification order.129

A precedence is a preorder % on F , such that � := % \- is well-founded.130

I Definition 1 (WPO [53, Def. 10, incl. Refinements (2c) and (2d) of Sect. 4.2]). Let A be a131

weakly monotone algebra, % a precedence, and π be a status. Let ≥A be simple with respect132

to π. The WPO reduction pair (�WPO,%WPO) is defined as follows: s �WPO t iff133

1. s >A t, or134

2. s ≥A t and135

a. s = f(s1, . . . , sn) and ∃i ∈ π(f). si %WPO t, or136

b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ π(g). s �WPO tj and137

i. f � g or138

ii. f % g and π(f)[s1, . . . , sn] �lex
WPO π(g)[t1, . . . , tm].139

The relation s %WPO t is defined in the same way, where �lex
WPO in the last line is replaced by140

%lex
WPO, and there are the following additional subcases in case 2:141

c. s ∈ V and either s = t or t = g(t1, . . . , tm), π(g) = ∅ and g is least in precedence,142

d. s = f(s1, . . . , sn), t ∈ V, >A is simple w.r.t. π, and ∀g. f � g ∨ (f % g ∧ π(g) = ∅).143

I Theorem 2 ([53]). WPO forms a reduction pair. J144

For the certification purpose it suffices to formalize Theorem 2 and to provide a verified145

implementation to check WPO constraints of the form s %( ) t for a concrete instance of146

WPO. In [53] it is further shown that a number of existing methods are obtained as instances147

of WPO, namely: the Knuth–Bendix order (KBO) [26], interpretation methods [15, 30],148

polynomial KBO [31], lexicographic path orders (LPO) [25], and non-collapsing argument149

filters [1, 29]. This means that, by having a WPO certifier, one can also certify these existing150

methods.151

2.2 Isabelle/HOL and IsaFoR152

We do not assume familiarity with Isabelle/HOL, since most of the illustrated formal153

statements are close to mathematical text. We give some brief explanations by illustrating154

certain term rewriting concepts via their counterparts in IsaFoR. For instance, IsaFoR contains a155

datatype for terms, (’f,’v)term, where ’f and ’v are type-variables representing the signature F156

and the set of variables V, respectively. A typing judgement is of the form term :: type. As157

an example, R :: (’f,’v)term rel states that R has type (’f,’v)term rel, i.e., R is a binary relation158

over terms.159

An Isabelle locale [3] is a named context where certain elements can be fixed and properties160

can be assumed. Locales are frequently used in IsaFoR. For instance, reduction pairs in IsaFoR161
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are formulated as a locale redpair.1 Here, O is relation composition, and SN is a predicate for162

well-foundedness (strong normalization).163

locale redpair =164

fixes S NS :: “(’f,’v)term rel”165

assumes “SN S”166

and “ctxt.closed NS”167

and “subst.closed S” and “subst.closed NS”168

and “NS O S ⊆ S” and “S O NS ⊆ S”169

Locales are also useful to model hierarchical structures. For instance, whereas redpair does170

not require that the relations are orders, this is required in the upcoming locale redpair_order171

which is an extension of redpair.172

locale redpair_order = redpair S NS +173

assumes “trans S” and “trans NS” and “refl NS”174

Beside the abstract definitions for reduction pairs, IsaFoR also provides several instances175

of them, e.g., one for RPO, one for KBO [40], etc. These instances can then be used in176

termination techniques like the reduction pair processor to validate concrete termination177

proofs. However, often the requirements of a reduction pair are not yet enough. As an178

example, the usable rules refinement [20, 48] requires Ce-compatible reduction pairs and179

argument filters. To this end IsaFoR contains the locale ce_af_redpair_order. It extends180

redpair_order by a new parameter π for the argument filter, and demands the additional181

requirements.182

locale ce_af_redpair_order = redpair_order S NS +183

fixes π :: “’f af”184

assumes “af_compatible π NS”185

and “ce_compatible NS”186

There are further locales for monotone reduction pairs, for reduction pairs which can be187

used in complexity proofs, etc.188

3 Formalization of WPO189

In this section we present our formalization of WPO. It starts by formalizing the properties190

of WPO in Section 3.1, so that we can add WPO as a new instance of a reduction pair to191

IsaFoR. Afterwards we illustrate our verified implementation for checking WPO constraints192

in Section 3.2.193

3.1 Properties of WPO194

As we have seen in Section 2.2, IsaFoR already contains several formalized results about195

reduction pairs, including general results, instances, and termination techniques based on196

reduction pairs. In contrast, at the start of this formalization of WPO, IsaFoR did not contain197

a single locale about generic weakly monotone algebras. In particular, the formalization of198

1 In IsaFoR, there is a more general locale for reduction triples (redtriple), which we simplify to reduction
pairs in the presentation of this paper.
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matrix interpretations and polynomial interpretations [42] directly refers to redpair and its199

variants. So, the question arises, how the generic version of WPO in Definition 1 can be200

formalized, which is based on arbitrary weakly monotone algebras.201

The obvious approach is just adding the missing pieces. To be more precise, one could202

have formalized weakly monotone algebras in IsaFoR and then on top of that formally verify203

the properties of WPO. However, this has the disadvantage that also instances of weakly204

monotone algebras already formalized in IsaFoR would have to be adjusted to the new interface;205

this would be polynomial interpretations, arctic interpretations, and matrix interpretations.206

Therefore, we choose a different approach, namely we only reformulate the definition of207

WPO, so that it does not depend on the notion of weakly monotone algebras anymore, but208

instead uses reduction pairs directly, cf. Definition 3.209

I Definition 3 (WPO based on Reduction Pairs). Let (>A,≥A) be a reduction pair, % a210

precedence, . . . and continue as in Definition 1 to define the relations �WPO and %WPO.211

In this way, all instances of reduction pairs in IsaFoR immediately become available as212

parameter to WPO, i.e., one can parametrize WPO with (max-)polynomial interpretations213

and matrix interpretations as it is already done in the literature, but it is also possible to214

use KBO or RPO as parameter to WPO, or one can even nest WPOs recursively.215

Of course the question is, how easy it is to formally prove properties of this WPO based216

on reduction pairs. At this point we profit from the fact that the structure of WPO is quite217

close to other path orders like RPO, and that the latter has already been fully formalized in218

IsaFoR.219

I Definition 4 (RPO as it has been formalized in IsaFoR). Let % be a precedence. Let σ be a220

function of type F → {lex,mul}. We define the RPO reduction pair (�RPO,%RPO) as follows:221

s �RPO t iff222

a. s = f(s1, . . . , sn) and ∃i ∈ {1, . . . , n}. si %RPO t, or223

b. s = f(s1, . . . , sn), t = g(t1, . . . , tm), ∀j ∈ {1, . . . ,m}. s �RPO tj and224

i. f � g or225

ii. f % g and σ(f) = σ(g) and [s1, . . . , sn] �σ(f)
RPO [t1, . . . , tm].226

iii. f % g and σ(f) 6= σ(g) and n > 0 and m = 0.227

The relation s %RPO t is defined in the same way, where �σ(f)
RPO in case (ii) is replaced by228

%σ(f)
RPO , where n > 0 in case (iii) is dropped, and there is one additional subcase:229

c. s ∈ V and either s = t or t = c where c is a constant in F that is least in precedence.230

So, we start our formalization of WPO by copy-and-pasting the definitions and proofs231

about RPO, and renaming every occurrence of “RPO” to “WPO”. At this point we have a232

fully compilable Isabelle file which defines RPO although everything is named WPO.233

Next, we include a couple of modifications of the definition, so that eventually the WPO234

of Definition 3 is defined formally. For each modification, we immediately adjust the formal235

proofs. These adjustments have mostly been straight-forward, also because of the valuable236

support by the proof assistant: we were immediately pointed to those parts of the proofs237

which got broken by a modification, without the necessity of manual rechecking those proofs238

that did not require an adjustment.239

To be more precise, we perform the following sequence of modifications.240
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We delete σ from RPO and replace it by lex, as the choice of multiset or lexicographic241

comparison via σ is not present in WPO. As a result, case (iii) is dropped, case (ii) always242

uses lexicographic comparison, and the formal proofs become shorter.243

We add the two tests s ≥A t and s >A t that are present in WPO, but not in RPO. At244

this point we add the requirement of WPO, that ≥A must be simple, in order to adjust245

all the proofs of the defined relations.246

We include the status π, which is present in the WPO definition, but not in RPO. In this247

step we also weaken the requirement of ≥A being simple to the requirement that ≥A is248

simple with respect to π.249

We generalize rule (2c) of RPO in such a way that not only for constants c we permit250

x %WPO c, but also x %WPO g(t1, . . . , tn) is possible if π(g) = ∅.251

We finally add refinement (2d) under the premise that >A is simple w.r.t. π. At this252

point we have precisely a formalized version of WPO as defined in Definition 3.253

Interestingly, after the final refinement we were no longer able to show all properties of254

(�WPO,%WPO), where for instance the transitivity proof of %WPO got broken and could not255

be repaired. Actually, we figured out that %WPO is no longer transitive with this refinement,256

cf. Example 5. This example was constructed with the help of Isabelle, since it directly257

pointed us to the case where the transitivity proof got broken.258

I Example 5. Consider F = {a}, π(a) = [], and a reduction pair (or algebra) where ≥A259

relates all terms and >A is empty. Then x %WPO a %WPO y, but x %WPO y does not hold.260

The reduction pair (or algebra) in Example 5 is obviously a degenerate case. In fact, by261

excluding this degenerate case, we can formally prove that WPO including refinement (2d)262

is a reduction pair.263

To this end, we gather all parameters of WPO in a locale and assume relevant properties264

of these parameters, either via other locales or as explicit assumptions. Precedence % is265

specified in form of three functions prc, pr_least, and pr_large: prc takes two symbols f and g266

and returns a pair of Booleans (f � g, f % g); pr_least is a predicate telling a symbol is least267

in % or not; and pr_large states whether a symbol is largest in % with respect to π or not, as268

required in rule (2d) of Definition 1. Whereas most of the properties of the precedence are269

encoded via an existing locale precedence, for a symbol being of largest precedence we add270

two new additional assumptions explicitly. In the locale we further use a Boolean ssimple to271

indicate whether >A is simple with respect to π, i.e., whether it is allowed to apply rule (2d)272

or not. Only then, the properties of pr_large must be satisfied and the degenerate case must273

be excluded. Being simple with respect to π is enforced via the predicate simple_arg_pos: for274

any relation R the property simple_arg_pos R f i ensures that f(t1, . . . , tn) R ti must hold275

for all t1, . . . , tn.276

locale wpo_params = redpair_order S NS + precedence prc pr_least277

for S NS :: “(’f, ’v) term rel” (∗ underlying reduction pair ∗)278

and prc :: “’f ⇒ ’f ⇒ bool× bool” and pr_least pr_large :: “’f ⇒ bool”(∗ precedence ∗)279

and ssimple :: bool (∗ flag whether rule (2d) is permitted ∗)280

and π :: “’f status” + (∗ status ∗)281

assumes “S ⊆ NS”282

and “i ∈ π f =⇒ simple_arg_pos NS f i” (∗ NS is simple w.r.t. π ∗)283

and “ssimple =⇒ i ∈ π f =⇒ simple_arg_pos S f i” (∗ S is simple w.r.t. π ∗)284

and “ssimple =⇒ NS 6= UNIV” (∗ exclude degenerate case ∗)285

and “ssimple =⇒ pr_large f =⇒ fst (prc f g) ∨ snd (prc f g) ∧ π g = []”286

and “ssimple =⇒ pr_large f =⇒ snd (prc g f) =⇒ pr_large g”287
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Within the locale we define the relations WPO_S and WPO_NS (�WPO and %WPO of288

Definition 3) with the help of a recursive function, and prove the main theorem:289

theorem “redpair_order WPO_S WPO_NS”290

Moreover, we prove that whenever the non-strict relation is compatible with an argument291

filter µ then also the WPO is compatible with π ∪ µ, defined as (π ∪ µ)(f) = π(f) ∪ µ(f).292

lemma assumes “af_compatible µ NS”293

shows “af_compatible (π ∪ µ) WPO_NS”294

We further prove that WPO is also Ce-compatible under mild preconditions, namely we295

just require that π(f) includes the first two positions of some symbol f . In summary, we296

formalize that WPO can be used in combination with usable rules, since it is an instance of297

the corresponding locale:298

lemma assumes “∃f. {0, 1} ⊆ π f” (∗ positions in IsaFoR start from 0 ∗)299

and “af_compatible µ NS”300

shows “ce_af_redpair_order WPO_S WPO_NS (π ∪ µ)”301

At the moment, our formalization does not cover any comparison to other term orders,302

e.g., there is no formal statement that each polynomial KBO can be formulated as an instance303

of a WPO. The simple reason is that such a formalization will not increase the power of the304

certifier, and the support for polynomial KBO can much easier be added by just translating305

an instance of polynomial KBO into a corresponding WPO within a certificate, e.g., when306

generating certificates in a termination tool or when parsing certificates in CeTA.307

3.2 Checking WPO Constraints308

Recall that our formalization of WPO in Section 3.1 has largely been developed by adjusting309

the existing formal proofs for RPO. When implementing an executable function to check310

constraints of a particular WPO instance, where precedence, status, etc. are provided, there311

is however one fundamental difference to RPO: in WPO we need several tests s >A t and312

s ≥A t of the underlying reduction pair. And in general, these tests are just approximations,313

e.g., since testing positiveness of non-linear polynomials is undecidable.314

In order to cover approximations, the implementations of reduction pairs in IsaFoR adhere315

to the following interface, which is a record named redpair that contains five components:316

One component is for checking validity of the input. For instance, for polynomial317

interpretations here one would check that each interpretation of an n-ary function symbol318

is a polynomial which only uses variables x1, . . . , xn.319

There are two functions check_S and check_NS of type (’f,’v)term ⇒ (’f,’v)term ⇒ bool320

for approximating whether two terms are strictly and weakly oriented, respectively.321

There is a flag mono which indicates whether the reduction pair is monotone. An enabled322

mono-flag is required for checking termination proofs without dependency pairs.323

The implicit argument filter of the reduction pair can be queried, a feature that is essential324

for usable rules.325

The generic interface is instantiated by all reduction pair (approximations) in IsaFoR, and326

they satisfy the common soundness property, that for a given approximation of a reduction327

pair rp and for given finite sets of strict- and non-strict-constraints, represented as two lists328
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S_list and NS_list, there exists a corresponding reduction pair that orients all constraints in329

S_list strictly and in NS_list weakly. In the formal statement, set is Isabelle’s function to330

convert a list into a set.331

assumes “redpair.valid rp” (∗ generic_reduction_pair ∗)332

and “∀ (s,t) ∈ set S_list. redpair.check_S rp s t”333

and “∀ (s,t) ∈ set NS_list. redpair.check_NS rp s t”334

shows “∃ S NS.335

ce_af_redpair_order S NS (redpair.af rp) ∧336

set S_list ⊆ S ∧ set NS_list ⊆ NS ∧337

(redpair.mono rp −→ ctxt.closed S)”338

We next explain how to instantiate this interface by WPO. To be more precise, we are339

given a status π, a precedence, and an approximated reduction pair rp and have to implement340

the interface for WPO such that generic_reduction_pair is satisfied.341

For checking validity of WPO, we assert redpair.valid rp and in addition perform checks342

that the status π is well-defined, i.e., π(f) ⊆ {1, . . . , n} must hold for each n-ary symbol f .343

Moreover, we globally compute symbols of largest and least precedence, i.e., the functions344

pr_least and pr_large of the wpo_params-locale. We further set the argument filter of WPO345

to π ∪ redpair.af af.346

For determining the ssimple parameter of the wpo_params-locale, there is the problem,347

that we do not know whether the generated strict relation S will be simple with respect to π.348

Moreover, to instantiate the locale, we always must ensure that NS is simple with respect to349

π. Unfortunately, the formal statement of generic_reduction_pair does not include any such350

information.351

We solve this problem by enlarging the record redpair by two new entries for strict and352

weak simplicity, and require in generic_reduction_pair that if these flags are enabled, then353

the relations S and NS must be simple with respect to π, respectively. Whereas now all354

required information for WPO is accessible via the interface, the change of the interface355

requires to adapt all existing reduction pairs in IsaFoR, e.g., polynomial interpretations, etc.,356

to provide the new information. To be more precise, we formalize two sufficient criteria357

for each reduction pair in IsaFoR, that ensure simplicity of the weak and strict relation,358

respectively.359

At this point all parameters of WPO are fixed, except for S and NS. We now define the360

approximation of WPO as the WPO where S and NS are replaced by redpair.check_S rp and361

redpair.check_NS rp, respectively.362

Next, we are given two lists of constraints wpo_S_list and wpo_NS_list that are oriented363

by the approximation of WPO. Out of these we extract the lists S_list and NS_list that364

contain all invocations of the underlying approximated reduction pair rp within the recursive365

definition of WPO, for instance:366

S_list = {(si, ti) | (s, t) ∈ wpo_S_list ∪ wpo_NS_list, sD si, tD ti, redpair.check_S rp si ti}367

After these lists have been defined, we apply generic_reduction_pair to get access to the368

(non-approximated) reduction pair in the form of relations S and NS. With these we are369

able to instantiate the wpo_params-locale and get access to the reduction pair WPO_S and370

WPO_NS. We further know that the approximations in S_list and NS_list are correct, e.g.,371

whenever (s, t) ∈ wpo_S_list ∪ wpo_NS_list, s D si, t D ti and redpair.check_S rp si ti then372

(si, ti) ∈ S. With this auxiliary statement we finally prove that the approximated WPO373

corresponds to the actual WPO for all constraints in wpo_S_list ∪ wpo_NS_list. So, we have374
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a reduction pair WPO_S and WPO_NS and an approximation statement, as required by375

generic_reduction_pair.376

In total, we get an interpretation of the generic interface for WPO, and thus can use377

WPO in every termination technique of IsaFoR which is based on reduction pairs.378

4 Integration of Max-Polynomial Interpretation379

As already mentioned in the previous section, various kinds of interpretation methods have380

been formalized in IsaFoR and supported by CeTA. However, max-polynomial interpreta-381

tions [16] were not yet supported. Hence we extend IsaFoR and CeTA to incorporate them, in382

particular those over natural numbers as required by WPO instances introduced in [53].383

In order for CeTA to certify proofs using max-polynomial interpretations, we must formally384

prove that the pair of relations (>A,≥A) forms a reduction pair, and implement a verifier to385

check s >A t and s ≥A t. The former is easy, it is clearly weakly monotone and well-founded.386

For a verified comparison of max-polynomials, instead of implementing a dedicated checker387

from scratch, we chose to reduce the comparison of max-polynomials into the validity of388

an integer arithmetic formula without max, for which we have a formalized validity checker389

already [7, 8]. This checker is essentially an SMT-solver for linear integer arithmetic that we390

utilize to ensure unsatisfiability of negated formulas.391

We formalize max-polynomials in IsaFoR as terms of the following signature.392

datatype sig = ConstF nat | SumF | ProdF | MaxF393

The interpretation of the symbols are as expected:394

primrec I where395

“I (ConstF n) = (λx. n)”396

| “I SumF = sum_list”397

| “I ProdF = prod_list”398

| “I MaxF = max_list”399

In order to compare max-polynomials, we first normalize the max-polynomials according400

to the following four distribution rules:401

max(x, y) + z → max(x+ z, y + z) x+ max(y, z)→ max(x+ y, x+ z)402

max(x, y) · z → max(x · z, y · z) x ·max(y, z)→ max(x · y, x · z)403
404

Note that the distribution of multiplication over max is admissible because we are only405

considering natural numbers. This way, the max-polynomials s and t are normalized to406

maxni=1 si and maxmi=1 ti, where s1, . . . , sn and t1, . . . , tm are polynomials (without max). In407

IsaFoR we define the mapping from s to s1, . . . , sn as to_IA. Then the comparison of two such408

normal forms is easily translated to an arithmetic formula without max, cf. [4]:409

s ≤( ) t ⇐⇒
nmax
i=1

si ≤( )

mmax
j=1

tj ⇐⇒
n∧
i=1

m∨
j=1

si ≤( ) tj410

This reduction is formalized in Isabelle as follows. Here, operators with subscript “f” build411

syntactic formulas, and those with prefix “IA.” or subscript “IA” come from the formalization412

of integer arithmetic; e.g., “
∧

f x ← xs. IA.const 0 ≤IA IA.var x” denotes an integer arithmetic413

formula representing “0 ≤ x1 ∧ · · · ∧ 0 ≤ xn”, where xs = [x1, . . . , xn]. Since we are originally414

concerned about natural numbers, in the following definitions we insert such assumptions415

for the list of variables occurring in s and t. Initially we did not add these assumptions and416

consequently, several valid termination proofs could not be certified.417
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definition le_via_IA where “le_via_IA s t ≡418

(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f419

(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si ≤IA tj)”420

421

definition less_via_IA where “less_via_IA s t ≡422

(
∧

f x ← vars_term_list s @ vars_term_list t. IA.const 0 ≤IA IA.var x) −→f423

(
∧

f si ← to_IA s.
∨

f tj ← to_IA t. si <IA tj)”424

The soundness of the reduction is formally proved as follows.425

lemma le_via_IA:426

assumes “|=IA le_via_IA s t” shows “s ≤A t”427

428

lemma less_via_IA:429

assumes “|=IA less_via_IA s t” shows “s <A t”430

Because of lemmas le_via_IA and less_via_IA it is now possible to invoke the validity431

checker for integer arithmetic on the formulas le_via_IA t s and less_via_IA t s in order to432

soundly validate the comparisons s ≥A t and s >A t, respectively.433

Finally all results are put together to form an instance of an generic_reduction_pair of434

Section 3.2, namely a verified implementation for max-polynomial interpretations.435

5 Certificate Format and Parser436

The Certification Problem Format (CPF) [41] is a machine-readable XML format, which was437

developed in the term rewriting community to serve as the standard communication language438

between verification tools and certification tools developed in various research groups.439

Here we present the addition to the CPF made in the current work, namely the certificates440

for WPO and max-polynomial interpretations. To this end, we also changed the structure of441

the parser in CeTA, since it had been relying on an XML parser in Isabelle/HOL [43], which442

had several limitations. In the current work we develop a more concise and flexible XML443

parser library, which allows notations like Haskell’s do notation.444

Notation “XMLdo s {...}” constructs a parser for an XML element whose tag is s. An445

element parser is of type ’a xmlt2, which is a function from internal representations of an446

XML element to the direct sum of type ’a and an error state. Inside an XMLdo block, one can447

parse inner elements by binding “x ← inner ;” or its variants such as “xs ←^{`..u} inner ;”448

which binds xs as the list of at least ` and at most u repeated inner elements. Here u is of449

type enat, so that it can be∞; the frequent instance←^{0..∞} is also written←∗. Typically450

a parser block should end with “xml_return r”, where r is the return value expressed with451

previously bound variables. This invocation also checks if there are no elements left to be452

parsed, in order for the parser to precisely define a grammar.453

Given parsers p1 and p2 for two kinds of elements, we allow choices between them by454

“p1 XMLor p2”. It works as follows: if parser p1 returns a recoverable error state, then it455

tries p2. Here recoverable means that the tag of the root element is not handled by p1. If p1456

handled the root element but failed in inner elements, then it goes to an unrecoverable error457

state.458

In the following we present some important parsers from this work, and by that specify459

XML grammars. Until a certain moment of the development we stated all parsers using460

Isabelle’s command fun that specifies a terminating function. However, the automatic termi-461

nation proving of fun turned out excessively slow for the parser of entire CPF. Therefore,462
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we now define our parsers via the partial_function [28] command, which does not require463

termination proofs, so that processing is much faster.464

A first concrete example is a parser for expressions in max-polynomial interpretations.465

Here notions defined in Section 4 are accessed via prefix “max_poly.”, and (STR ”...”) is the466

notation for target-language strings in Isabelle/HOL.467

partial_function (sum_bot) exp_parser :: “(max_poly.sig, nat) term xmlt2” where468

[code]: “exp_parser xml = (469

XMLdo (STR ”product”) {470

exps ←∗ exp_parser; xml_return (Fun max_poly.ProdF exps)471

} XMLor XMLdo (STR ”sum”) {472

exps ←∗ exp_parser; xml_return (Fun max_poly.SumF exps)473

} XMLor XMLdo (STR ”max”) {474

exps ←^{1..∞} exp_parser; xml_return (Fun max_poly.MaxF exps)475

} XMLor XMLdo (STR ”constant”) {476

n ←nat; xml_return (max_poly.const n)477

} XMLor XMLdo (STR ”variable”) {478

n ←nat; xml_return (Var (n − 1))479

}) xml”480

The parser recursively defines the grammar of max-polynomial expressions (as a complex481

type in XML schema terminology). It is a choice among the elements <product>, <sum>,482

<max>, <constant> and <variable>. Elements <product> and <sum> recursively contain483

an arbitrary number of subexpressions and construct corresponding terms over signature484

max_poly.sig. Element <max> is similar, except that it demands at least one subexpression.485

Element <constant> contains just a natural number, which is parsed as a constant. Element486

<variable> also contains a natural number, which indicates the i-th variable (turned into487

zero-based indexing).488

The extended format for reduction pairs (triples) is as follows:489

partial_function (sum_bot) redtriple :: “’a redtriple_impl xmlt2” where490

[code]: “redtriple xml = ( ... (∗ existing reduction pairs ∗)491

XMLor XMLdo (STR ”maxPoly”) { (∗ max−polynomial interpretations ∗)492

inters ←∗ XMLdo (STR ”interpret”) {493

f ← xml2name;494

a ← XMLdo (STR ”arity”) { a ←nat; xml_return a };495

e ← exp_parser;496

xml_return ((f, a), e)497

};498

xml_return (Max_poly inters)499

} XMLor XMLdo (STR ”weightedPathOrder”) { (∗ new alternative for WPO ∗)500

a ← wpo_params;501

b ← redtriple;502

xml_return (WPO a b)503

}504

XMLor XMLdo (STR ”filteredRedPair”) {...} (∗ collapsing argument filter ∗)505

) xml”506

It is extended from the previous reduction pairs with three new alternatives. Element507

<maxPoly> is the reduction pair induced by max-polynomial interpretations, which is a list508
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of elements <interpret>, each assigning a function symbol f of arity a its interpretation as509

expression e. The <weightedPathOrder> element characterizes a concrete WPO reduction510

pair. It consists of WPO specific parameters wpo_params that fixes status and precedences,511

and another reduction pair in a recursive manner, which specifies the “algebra” A in terms of512

(>A,≥A). The <filteredRedPair> element is newly added specially for collapsing argument513

filters. Since partial status subsumes non-collapsing argument filters [50], only dedicated514

collapsing ones have to be specially supported.515

6 Implementations and Experiments516

In order to evaluate the relevance of our extension of CeTA by WPO and max-polynomial517

interpretations, we implement certificate output for WPO in two termination analyzers:518

NaTT and TTT2.519

NaTT originates as an experimental implementation of WPO [51]. From its early design520

NaTT followed the trend [54, 55, 37, 9] of reducing termination problems into SMT problems521

and employ an external SMT solver, by default, Z3 [12]. Further, NaTT utilizes incremental522

SMT solving, and implements some tricks for efficiency [52]. In the current work, its output is523

adjusted to confine to the newly defined XML certificate format for WPO, max-polynomials,524

and collapsing argument filters. These are essentially the central techniques implemented in525

NaTT, but a few techniques implemented later on in NaTT had to be deactivated to be able526

to be certified by CeTA; some of them, such as nontermination proofs, are actually supported527

but NaTT is not yet adjusted to produce certificates for them.528

TTT2 succeeded the automated termination analyzer TTT2 in 2007. It implements numerous529

(non-)termination techniques. For searching reduction pairs it uses a SAT/SMT-based530

approach and the SMT solver MiniSMT [56]. We extend TTT2 by an implementation of531

WPO, following mostly the presented encodings in [53]. A notable difference in the search532

space for max-polynomials: while NaTT heuristically chooses between max and sum, TTT2533

embeds this choice into the SMT encoding.534

Besides the integration of the full WPO search engine, we would also like to mention535

an additional feature of TTT2 regarding WPO. Usual termination tools just try to find any536

proof. Even if users want a specific shape of proofs, they cannot impose constraints on proofs537

that termination tools find. TTT2 provides termination templates [38] where users can fix538

parts of proofs via parameters when invoking TTT2. We also added support for termination539

templates for WPO, i.e., if one wants to find a specific proof with WPO then (some) values540

can be fixed with TTT2 and afterwards CeTA can validate if the proof is correct.541

I Example 6. Consider the following TRS (Zantema_05/z10.xml of TPDB):542

a(lambda(x), y)→ lambda(a(x, p(1, a(y, t)))) a(a(x, y), z)→ a(x, a(y, z))543

a(p(x, y), z)→ p(a(x, z), a(y, z)) a(id, x)→ x544

a(1, id)→ 1 a(t, id)→ t545

a(1, p(x, y))→ x a(t, p(x, y))→ y546
547

If we just call TTT2 with WPO (�2) on this TRS then we get a termination proof consisting548

of arbitrary values. However, e.g., we might want a specific WPO proof with the precedence549

2 The link in this icon directs to the web interface of TTT2, preloaded with this example.
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Table 1 Certification Experiments

Tool Yes No Time (tool) Time (CeTA)
NaTT certifiable 751 0 02:32:01 00:13:31
TTT2 w/ WPO certifiable 754 194 1d 10:32:00 00:07:43
TTT2 w/o WPO certifiable 751 194 1d 06:31:19 00:03:44
NaTT 864 169 02:42:55 –
TTT2 w/ WPO 827 205 13:48:53 –
TTT2 w/o WPO 827 205 13:45:39 –

id > a > lambda > t > 1 > p and a status reversing the arguments of p for the lexicographic550

comparison. For this we can use the following call (�):551

./ttt2 -s "wpo -msum -cpf -st \"p = [1;0]\" -prec \"id > a > lambda > t > 1552

> p\"" Zantema_05/z10.xml553

The flag -cpf enforces proof output via CPF, the flag -msum activatesMSum (from [53])554

as interpretation for WPO, the flag -st fixes statuses and the flag -prec fixes a (part of a)555

precedence. Also all other WPO parameters, for the standard instances of [53], can be fixed556

via flags. In order to be sure that the proof is correct we can call CeTA on the certificate.557

As a result we obtain a proof with the stated preconditions and in a broader sense TTT2 can558

be used to find specific WPO proofs. For some applications, it even makes sense to fix all559

parameters of WPO, so that there is no search at all. This option is useful for validating560

WPO-based termination proofs in papers, since writing XML-files in CPF by hand is tedious,561

but it is easy to invoke TTT2 on an ASCII representation of both the TRS and the WPO562

parameters. Then one automatically gets the corresponding proof in XML so that validation563

by CeTA is possible afterwards.564

Evaluation We now evaluate CeTA over the certifiable proofs generated by NaTT and TTT2.565

Experiments are run on StarExec [45], a computation resource service for evaluating logic566

solvers and program analyzers. The environment offers an Intel® Xeon® CPU E5-2609567

running at 2.40GHz and 128GB main memory for each pair of a solver and problem. We set568

300s timeout for each pair, as in the Termination Competition 2019.569

We compare six configurations: NaTT, TTT2 without WPO and with WPO, and their570

variants that restrict to certifiable techniques. The results are summarized in Table 1. We571

remark that all the proofs generated by certifiable configurations are successfully certified by572

CeTA. Most notably, the termination proofs for the 34 examples mentioned in the introduction573

that reportedly only NaTT could prove terminating are verified.574

The impact of WPO in TTT2, unfortunately, appears marginal: It only brings three575

additional termination proofs in the certifiable setting. It is most likely that the proof search576

heuristic of TTT2 is not optimal, and more engineering effort is necessary in order to maximize577

the effect of WPO for TTT2.578

There are still significant gaps between full and certifiable versions of each tool, since the579

certifiable versions must disable techniques that are not (fully) supported by CeTA. Among580

them, both NaTT and TTT2 had to disable or restrict:581

max-polynomial interpretations with negative constants [22, 16];582

reachability analysis techniques: for NaTT satisfiability-oriented ones [44], and for TTT2583

ones based on tree automata [34];584

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y%20z%20)%0A(RULES%20%0A%20%20%20%20%20%20%20%20a(lambda(x)%2Cy)%20-%3E%20lambda(a(x%2Cp(1%2Ca(y%2Ct))))%0A%20%20%20%20%20%20%20%20a(p(x%2Cy)%2Cz)%20-%3E%20p(a(x%2Cz)%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(a(x%2Cy)%2Cz)%20-%3E%20a(x%2Ca(y%2Cz))%0A%20%20%20%20%20%20%20%20a(id%2Cx)%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(1%2Cid)%20-%3E%201%0A%20%20%20%20%20%20%20%20a(t%2Cid)%20-%3E%20t%0A%20%20%20%20%20%20%20%20a(1%2Cp(x%2Cy))%20-%3E%20x%0A%20%20%20%20%20%20%20%20a(t%2Cp(x%2Cy))%20-%3E%20y%0A%20%20%20%20%20%20%20%20%0A)%0A%20%20%20%20&strategy=expert&expert=wpo%20-msum%20-cpf%20-st%20%22p%20%3D%20%5B1%3B0%5D%22%20-prec%20%22id%20%3E%20a%20%3E%20lambda%20%3E%20t%20%3E%201%20%3E%20p%22
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uncurrying [23]: although the technique itself is fully supported [39], both NaTT and585

TTT2 have their own variants which exceeds the capability of CeTA.586

These observations lead to promising directions of future work. For instance, negative587

constants seems essentially within our reach in the light of the certified SMT solving.588

7 Summary589

We have presented an extension of the IsaFoR library and the certifier CeTA with a formalization590

of WPO. First, we discussed how we obtained WPO as a new reduction pair in IsaFoR591

with relying on the already existing formalization of RPO and adapting its proofs for the592

requirements of WPO. Second, we described how max-polynomial interpretations were added593

to IsaFoR as these are often used in combination with WPO. Afterwards we gave a brief594

overview of the CPF format and its corresponding parser in CeTA. For this parser we have a595

similar notion as the do-notation in Haskell which makes the parser implementation concise596

and easy to understand.597

The main formal developments in this paper consists of only 3669 lines of Isabelle598

source code, since several concepts were already available in IsaFoR, e.g., lexicographic599

comparisons and precedences for WPO and the integer arithmetic solver for max-polynomial600

interpretations.601

We tested the new version of CeTA with the termination analysis tools NaTT and TTT2602

which both have been extended to generate CPF proofs with WPO. All generated proofs603

have been validated, including those for the 34 TRSs that reportedly only NaTT could prove604

terminating.605
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