
Algebraic Numbers in Isabelle/HOL

René Thiemann and Akihisa Yamada

University of Innsbruck

Abstract. We formalize algebraic numbers in Isabelle/HOL, based on
existing libraries for matrices and Sturm’s theorem. Our development
serves as a verified implementation for real and complex numbers, and
it admits to compute roots and completely factor real and complex
polynomials, provided that all coefficients are rational numbers. Moreover,
we provide two implementations to display algebraic numbers, an injective
and expensive one, and a faster but approximative version.

To this end, we mechanize several results on resultants, which also required
us to prove that polynomials over a unique factorization domain form
again a unique factorization domain. We moreover formalize algorithms for
factorization of integer polynomials: Newton interpolation, factorization
over the integers, and Kronecker’s factorization algorithm, as well as a
factorization oracle via Berlekamp’s algorithm with the Hensel lifting.

1 Introduction

Algebraic numbers, i.e., the numbers that are expressed as roots of non-zero
rational (equivalently, integer) polynomials, are an attractive subset of the real
or complex numbers. They are closed under arithmetic operations, the arith-
metic operations are precisely computable, and comparisons are decidable. As
a consequence, algebraic numbers are an important utility in computer algebra
systems.

Our original interest in algebraic numbers stems from a certification problem
about automatically generated complexity proofs, where we have to compute the
Jordan normal form of a matrix in Qn×n [16]. To this end, all complex roots of
the characteristic polynomial have to be determined.

Example 1. Consider a matrix A whose characteristic polynomial is f(x) =
1 + 2x+ 3x4. The complex roots of f are exactly expressed via the real roots of
g = −1− 12x2 + 144x6 and h = 7− 216x2 − 336x4 − 1248x6 + 1152x8 + 6912x12:

root #1 of g + (root #2 of h)i root #1 of g + (root #3 of h)i
root #2 of g + (root #1 of h)i root #2 of g + (root #4 of h)i

Here, real roots are indexed according to the standard order. As the norms of all
of these roots are strictly less than 1 (the norms are precisely root #3 and #4
of the polynomial i = 1− 3x4 − 12x6 − 9x8 + 27x12), we can conclude that An

tends to 0 for increasing n.

In this paper, we provide a fully verified and efficient implementation of
algebraic numbers in Isabelle/HOL [14].

– The first problem in computation with algebraic numbers is to obtain a
non-zero polynomial which represents a desired algebraic number as its root.
To this end, we formalize the theory of resultants, and thus provide a verified
computation of non-zero polynomials with desired roots (Section 2).

– A direct computation of resultants as determinant is infeasible in practice.
Hence, we formalize a method based on a Euclid-like algorithm in combination
with polynomial remainder sequences [1,5] (Section 3).

– Polynomials computed via resultants are often not optimal for represent-
ing an algebraic number, and lead to exponential growth of degrees during
arithmetic operations. To avoid this problem, we formalize polynomial fac-
torization algorithms, including an efficient oracle via Berlekamp’s algorithm
and the Hensel lifting, and an expensive but certified version of Kronecker’s
algorithm. To this end, we also formalize algorithms for prime factorization
and polynomial interpolation, as well as Gauss’ lemma. (Section 4)

– An algebraic number a is basically represented by a triple (f, l, r) of rational
polynomial f and l, r ∈ Q such that a is the unique root of f within the inter-
val [l, r]. To compute such an interval, we generalize the existing formalization
of Sturm’s method [6] to work over the rationals, and precompute the Sturm
sequence to avoid recomputation. We also take special care for arithmetic
operations involving a rational number, and finally provide a quotient type
for algebraic numbers, which works modulo different representations of the
same algebraic numbers. (Section 5)

– We also integrate complex algebraic numbers. Our algorithms cover complex
root computation, as well as a factorization for rational polynomials over R
or C. (Section 6)

– Finally, we develop algorithms for displaying algebraic numbers. A challenge
in precisely representing algebraic numbers is to ensure the uniqueness of
string representation, independent from the internal representation. Here,
the certified factorization algorithm plays a crucial role. (Section 7)

For the Coq proof assistant, the Mathematical Components library1 contains
various formalized results around algebraic numbers, e.g., quantifier elimination
procedures for real closed fields [4]. In particular, the executable formalization of
algebraic numbers for Coq is given by Cohen [2]. He employed Bézout’s theorem
to derive desired properties of resultants. In contrast, we followed proofs by
Mishra [13] and formalized various facts on resultants. We further mechanize
an algorithm to compute resultants, as well as the polynomial factorization
algorithms. Our work is orthogonal to the more recent work which completely
avoids resultants [3].

For Isabelle, Li and Paulson [11] independently implemented algebraic num-
bers. They however did not formalize resultants; instead, they employed an

1 See http://math-comp.github.io/math-comp.

2

http://math-comp.github.io/math-comp

external tool as an oracle to provide polynomials that represent desired alge-
braic numbers, and provided a method to validate that the polynomials from
the oracle are suitable.2 Although we also use untrusted oracles for polynomial
factorization, the difference is crucial. First, finding polynomials is indispensable
for the computation of algebraic numbers, and hence their implementation is not
ensured to always succeed. On the other hand, factorization is optional, and is
employed only for efficiency. Second, in addition to an external oracle interface,
we also provide an internal one, so that no external tools are required. Finally,
due to our optimization efforts, we can execute their examples [11, Figure 3] in
0.03 seconds on our machine, where they reported 4.16 seconds.3

The whole formalization has been made available in the archive of formal
proofs for Isabelle 2016 (http://afp.sourceforge.net), cf. entries Algebraic
Numbers, Polynomial Factorization, and Polynomial Interpolation.

2 Resultants

In order to define arithmetic operations over algebraic numbers, the first task is
the following: Given non-zero polynomials that have the input numbers as roots,
compute a non-zero polynomial that has the output number as a root.

Consider an algebraic number a represented as a root of f(x) =
∑m

i=0 fix
i. To

represent the unary minus −a, clearly poly-uminus f , defined as the polynomial
f(−x), does the job. For the multiplicative inverse 1

a , it is also not difficult to
show that poly-inverse f , defined as

∑m
i=0 fix

m−i, has 1
a as a root.

For addition and multiplication, given another polynomial g(x) =
∑n

i=0 gix
i

representing an algebraic number b, we must compose non-zero polynomials poly-
add f g and poly-mult f g that have a+ b and a · b as a root, resp.

For this purpose the resultant is a well-known solution. The resultant of the
polynomials f and g above is defined as Res(f, g) = det(Sf,g), where Sf,g is the
Sylvester matrix (blank parts are filled with zeros):

Sf,g =



fm fm−1 · · · f0
. . .

. . .
. . .

fm fm−1 · · · f0
gn gn−1 · · · g0

. . .
. . .

. . .

gn gn−1 · · · g0


In the remainder of this section, we consider addition – multiplication is

treated similarly. The desired result is informally stated as follows, where poly-
add f g is defined as the resultant of the two bivariate polynomials f(x− y) and
g(y), where the resultant is a univariate polynomial over x.

2 Here one cannot just evaluate the polynomial on the algebraic point and test the
result is 0; we are defining the basic arithmetic operations needed for this evaluation.

3 However, we use a faster computer with 3.5 GHz instead of 2.66 GHz.

3

http://afp.sourceforge.net

Lemma 2. Let f and g be non-zero univariate polynomials with roots a and b,
respectively. Then poly-add f g is a non-zero polynomial having a+ b as a root.

The lemma contains two claims: poly-add f g has a + b as a root, and
poly-add f g 6= 0. In the next sections we prove each of the claims.

2.1 Resultant has Desired Roots

For non-constant polynomials f and g over a commutative ring R, we can compute
polynomials p and q such that

Res(f, g) = p(x) · f(x) + q(x) · g(x) (1)

To formally prove the result, we first define a function mk-poly that operates
on the Sylvester matrix. For each j-th column except for the last one, mk-poly
adds the j-th column multiplied by xm+n−j to the last column. Each addition
preserves determinants, and we obtain the following equation:

Res(f, g) = det(mk-poly Sf,g) = det



fm · · · f1 f0 f(x) · xn−1
. . .

. . .
. . .

...
fm · · · f1 f0 f(x) · x

fm · · · f1 f(x)

gn · · · g1 g0 g(x) · xn−1
. . .

. . .
. . .

...
gn · · · g1 g0 g(x) · x

gn · · · g1 g(x)


(2)

Now we apply the Laplace expansion, which we formalize as follows.

lemma assumes A ∈ carrierm n n (* meaning A ∈ Rn×n *) and j < n
shows det A = (

∑
i < n. A(i, j) ∗ cofactor A i j)

Here, cofactor A i j is defined as (−1)i+j · det(B), where B is the minor matrix
of A obtained by removing the i-th row and j-th column. Thus we can remove
the last column of the matrix A in (2), by choosing j = m + n − 1. Note that
then every cofactor A i j is a constant. We obtain p and q in (1) as follows:

Res(f, g) =

(
n−1∑
i=0

cofactor A i j · xi
)
·f(x)+

(
m−1∑
i=0

cofactor A (n+ i) j · xi
)
·g(x)

Lemma 3. assumes degree f > 0 and degree g > 0
shows ∃p q. degree p < degree g ∧ degree q < degree f ∧

[: resultant f g :] = p ∗ f + q ∗ g

Here, [: c :] is Isabelle’s notation for the constant polynomial c. The lemma
implies that, if f and g are polynomials of positive degree with a common root a,
then Res(f, g) = p(a) · f(a) + q(a) · g(a) = 0. The result is lifted to the bivariate
case: for any a and b, f(a, b) = g(a, b) = 0 implies Res(f, g)(a) = 0.

4

lemma assumes degree f > 0 ∨ degree g > 0 and poly2 f a b = 0
and poly2 g a b = 0
shows poly (resultant f g) a = 0

Here, poly is Isabelle’s notation for the evaluation of univariate polynomials, and
poly2 is our notation for bivariate polynomial evaluation.

Now for univariate non-zero polynomials f and g with respective roots a and
b, the bivariate polynomials f(x− y) and g(y) have a common root at x = a+ b
and y = b. Hence, the univariate polynomial poly-add f g = Res(f(x− y), g(y))
indeed has a+ b as a root.

lemma assumes g 6= 0 and poly f a = 0 and poly g b = 0
shows poly (poly-add f g) (a + b) = 0

2.2 Resultant is Non-Zero

Now we consider the second claim: poly-add f g is a non-zero polynomial. Note
that it would otherwise have any number as a root. Somewhat surprisingly,
formalizing this claim is more involving than the first one.

We first strengthen Lemma 3, so that p and q are non-zero polynomials. Here,
we require an integral domain idom, i.e., there exist no zero divisors.

lemma assumes degree f > 0 and degree g > 0
shows ∃ p q. degree p < degree g ∧ degree q < degree f ∧

[: resultant f g :] = p ∗ f + q ∗ g ∧ p 6= 0 ∧ q 6= 0

We further strengthen this result, so that Res(f, g) = 0 implies f and g share a
common factor. This requires polynomials over a unique factorization domain
(UFD), which is available as a locale factorial-monoid in HOL/Algebra, but not
as a class. We define the class ufd by translating the locale as follows:

class ufd = idom +
assumes factorial-monoid L carrier = UNIV − {0}, mult = op ∗, one = 1 M

We also show that polynomials over a UFD form a UFD, a non-trivial proof.

instance poly :: (ufd) ufd

Note also that the result is instantly lifted to any multivariate polynomials; if α
is of sort ufd , then so is α poly , and thus so is α poly poly , and so on.

Now we obtain the following result, where coprimeI generalizes the predicate
coprime (originally defined only on the class gcd) over idom as follows:

definition coprimeI f g ≡ ∀h. h dvd f −→ h dvd g −→ h dvd 1

Lemma 4. assumes degree f > 0 ∨ degree g > 0 and resultant f g = 0
shows ¬ coprimeI f g

5

Now we reason Res(f(x − y), g(y)) 6= 0 by contradiction. If Res(f(x − y),
g(y)) = 0, then Lemma 4 implies that f(x− y) and g(y) have a common proper
factor. This cannot be the case for complex polynomials: Let f = f1 · · · fm and
g = g1 · · · gn be a complete factorization of the univariate polynomials f and g.
Then the bivariate polynomials f(x− y) and g(y) are factored as follows:

f(x− y) = f1(x− y) · · · fm(x− y) g(y) = g1(y) · · · gn(y) (3)

Moreover, this factorization is irreducible and unique (up to permutation and
scalar multiplication). Since there is a common factor among f(x− y) and g(y),
we must have fi(x− y) = gj(y) for some i ≤ m and j ≤ n. By fixing y, e.g., to 0,
we conclude fi(x) = gj(0) is a constant. This contradicts the assumption that fi
is a proper factor of f . We conclude the following result:

lemma assumes f 6= 0 and g 6= 0 and poly f x = 0 and poly g y = 0
shows poly-add f g 6= 0

In order to ensure the existence of the complete factorization (3), our original
formalization employs the fundamental theorem of algebra, and thus the above
lemma is initially restricted to complex polynomials. Only afterwards the lemma
is translated to rational polynomials via a homomorphism lemma for poly-add . In
the development version of the AFP (May 2016), however, we have generalized
the lemma to arbitrary field polynomials.

3 Euclid-Like Computation of Resultants

Resultants can be computed by first building the Sylvester matrix and then
computing its determinant by transformation into row echelon form. A better
way to compute resultants has been developed by Brown via subresultants [1],
and a Coq formalization of subresultants exists [12]. We leave it as future work to
formalize this algorithm in Isabelle. Instead, we compute resultants using ideas
from Collins’ primitive PRS (polynomial remainder sequences) algorithm [5].

3.1 The Algorithm and Its Correctness

The algorithm computes resultants Res(f, g) in the manner of Euclid’s algorithm.
It repeatedly performs the polynomial division on the two input polynomials and
replaces one input of larger degree by the remainder of the division.

We formalize the correctness of this algorithm as follows. Here we assume the
coefficients of polynomials are in an integral domain which additionally has a
division function such that (a · b)/b = a for all b 6= 0. Below we abbreviate m =
degree f , n = degree g , k = degree r , and c = leading-coeff g .

Lemma 5 (Computation of Resultants).

1. resultant f g = (− 1)n ∗m ∗ resultant g f
2. assumes d 6= 0 shows resultant (d · f) g = dn ∗ resultant f g

6

3. assumes f = g ∗ q + r and n ≤ m and k < n
shows resultant f g = (− 1)n ∗ (m− k) ∗ cm−k ∗ resultant r g

Lemma 5 (1) allows swapping arguments, which is useful for a concise definition
of the Euclid-like algorithm. It is proven as follows: We perform a number of row
swappings on the Sylvester matrix Sf,g to obtain Sg,f . Each swap will change
the sign of the resultant. In Isabelle, we exactly describe how the transformed
matrix looks like after each row-swapping operation.

Lemma 5 (2) admits computing Res(f, g) via Res(d · f, g). As we will see,
this is crucial for applying the algorithm on non-field polynomials including
bivariate polynomials, which we are dealing with. To prove the result in Isabelle,
we repeatedly multiply the rows in Sf,g by d, and obtain Sd·f,g.

The most important step to the algorithm is Lemma 5 (3), which admits
replacing f by the remainder r of smaller degree. A paper proof again applies
a sequence of elementary row transformations to convert Sqg+r,g into Sr,g. We
formalize these transformation by a single matrix multiplication, and then derive
the property in a straightforward, but tedious way.

To use Lemma 5 (3), we must compute a quotient q and a remainder r such
that f = gq + r. For field polynomials one can just perform polynomial long
division to get the corresponding q and r. For non-field polynomials, we formalize
the polynomial pseudodivision, whose key property is formalized as follows:

lemma assumes g 6= 0 and pseudo-divmod f g = (q, r)
shows c1+m−n · f = g ∗ q + r ∧ (r = 0 ∨ k < n)

Now we compute Res(f, g) as follows: Ensure m ≥ n using Lemma 5 (1), and
obtain r via pseudodivision. We have Res(f, g) = Res(c1+m−nf, g)/c(1+m−n)·n

by Lemma 5 (2), and Res(c1+m−nf, g) is simplified to Res(g, r) by Lemma 5 (3),
where the sum of the degrees of the input polynomials are strictly decreased.

The correctness of this reduction is formalized as follows:

lemma assumes pseudo-divmod f g = (q, r) and m ≥ n and n > k
shows resultant f g = (− 1)n∗m ∗ resultant g r / c(1+m−n)∗n+k−m

We repeat this reduction until the degree n of g gets to zero, and then use
the following formula to finish the computation.

lemma assumes n = 0 shows resultant f g = cm

3.2 Polynomial Division in Isabelle’s Class Hierarchy

When formalizing the algorithms in Isabelle (version 2016), we encountered a
problem in the class mechanism. There is already the division for field polynomials
formalized, and based on this the instance declaration “instantiation poly ::
(field) ring-div”, meaning that α poly is in class ring-div if and only if α is a
field. Afterwards, one cannot have a more general instantiation, such as non-field
polynomials to be in class idom-divide (integral domains with partial divisions).

As a workaround, we made a copy of idom-divide with a different name, so
that it does not conflict with the current class instantiation.

7

Table 1. Identifying the complex roots of 1 + 2x+ 3x4 as in Example 1.

algorithm to compute resultants overall time

(a) algorithm of Section 3.1 > 24h
(b) (a) + GCD before pseudodivision 30m32s
(c) (b) with GCD for integer polynomials 34s

class idom-div = idom + fixes exact-div :: α ⇒ α ⇒ α
assumes b 6= 0 =⇒ exact-div (a ∗ b) b = a

For polynomials over α :: idom-div , we implement the polynomial long division.
This is then used as exact-div for α poly and we provide the following instantiation
(which also provides division for multivariate polynomials):4

instantiation poly :: (idom-div) idom-div

We further formalize pseudodivision which actually does not even invoke a single
division and is thus applicable on polynomials over integral domains.

3.3 Performance Issues

The performance of the algorithm in Section 3.1 is not yet satisfactory, due to the
repeated multiplication with c1+m−n, a well-known phenomenon of pseudodivision.
To avoid this problem, in every iteration of the algorithm we divide g by its content,
i.e., the GCD of its coefficients, similar to Collins’ primitive PRS algorithm. At
this point a formalization of the subresultant algorithm will be benefitial as it
avoids the cost of content computation.

We further optimize our algorithm by switching from Q to Z. When invoking
poly-add , etc., over polynomials whose coefficients are integers (but of type rat),
we ensure that the intermediate polynomials have integer coefficients. Thus we
perform the whole computation in type int , and also switch the GCD algorithm
from the one for rational polynomials to the one for integer polynomials.

This has a significant side-effect: In Isabelle, the GCD on rational polynomials
is already defined and it has to be normalized so that the leading coefficient of
the GCD is 1. Thus, the GCD of the rational polynomials 1000(x + 1)x and
2000(x+ 2)(x+ 1) is just x+ 1. In contrast, we formalized5 Collins’ primitive
PRS algorithm for GCD computation for integer polynomials, where the GCD
of the above example is 1000(x+ 1). Hence, dividing by the GCD will eliminate
large constants when working on Z, but not when working on Q.

Finally, we provide experimental data in Table 1 in order to compare the
various resultant computation algorithms. In each experiment the complex roots

4 We contributed our formalization to the development version of Isabelle (May 2016).
There one will find the general “instantiation poly :: (idom-divide) idom-divide”.

5 As for the division algorithm, we have not been able to work with Isabelle’s existing
type class for GCDs, as the GCD on polynomials is only available for fields.

8

Table 2. Computation time/degree of representing polynomials for
∑n

i=1

√
i.

factorization n = 6 n = 7 n = 8 n = 9 n = 10

none 0.16s/64 2.78s/128 2m11s/256 22m19s/512 12h19m/1024
square-free 0.17s/64 2.86s/128 2m14s/256 15m31s/384 9h31m/768
complete 0.03s/8 0.14s/16 0.35s/16 0.35s/16 0.59s/16

for f of the leading Example 1 are identified. Here, the intermediate computation
invokes several times the resultant algorithm on bivariate polynomials of degree 12.
Note that in experiment (c) – which applies our final resultant implementation –
only 17 % of the time is spent for the resultant computation, i.e., below 6 seconds.

This and all upcoming experiments have been performed using extracted
Haskell code which has been compiled with ghc -O2, and has been executed on
a 3.5 GHz 6-Core Intel Xeon E5 with 32 GB of RAM running Mac OS X.

4 Factorization of Rational Polynomials

Iterated resultant computations will lead to exponential growth in the degree
of the polynomials. Hence, after computing a resultant to get a polynomial f
representing an algebraic number a, it is a good idea to factor f = fe11 · · · f

ek
k

and pick the only relevant factor fi that has a as a root.
The benefit of factorization is shown in Table 2, where

∑n
i=1

√
i is computed

for various n, and the computation time t and the degree d of the representing
polynomial is reported as t/d. The table reveals that factorization becomes
beneficial as soon as at it can simplify the polynomial.

We provide two approaches for the factorization of rational polynomials.
First, we formalize Kronecker’s algorithm. The algorithm serves as a verified
and complete factorization, although it is not efficient. Second, we also employ
factorization oracles, an untrusted code that takes a rational polynomial and
gives a list of factors (and the leading coefficient). Validating factorization is easy:
the product of the factors should be the input polynomial. On the other hand,
completeness is not guaranteed, i.e., the factors are not necessarily irreducible.

4.1 Verified Kronecker’s Factorization

We formalize Kronecker’s factorization algorithm for integer polynomials. We
also formalize Gauss’ lemma, which essentially states that factorization over
Q is the same as factorization over Z; thus the algorithm works on rational
polynomials. The basic idea of Kronecker’s algorithm is to construct a finite
set of lists of sample points, and for each list of sample points, one performs
polynomial interpolation to obtain a potential factor f and checks if f divides
the input polynomial. Formally proving the soundness of this algorithm is not
challenging; however, many basic ingredients were not available in Isabelle.

9

For instance, in order to construct the set of lists of sample points, one has to
compute all divisors of an integer n 6= 0. If not to be done naively, this basically
demands a prime factorization of |n|, for which we did not find any useful existing
algorithm that has been formalized in Isabelle.

Therefore, we formalize algorithm A of Knuth [9, Section 4.5.4] where the list
of trial divisors currently excludes all multiples of 2, 3, and 5. Here, the candidate
generation works via a function next-candidates that takes a lower bound n as
input and returns a pair (m,xs) such that xs includes all primes in the interval
[n,m), provided that n = 0 or n mod 30 = 11. In the following definition, primes-
1000 is a precomputed list consisting of all primes up to 1000.

definition next-candidates n = (if n = 0 then (1001, primes-1000)
else (n + 30, [n, n+2, n+6, n+8, n+12, n+18, n+20, n+26]))

Similarly, we did not find formalized results on polynomial interpolation.
Here, we integrate both Lagrange and Newton interpolation where the latter is
more efficient. Furthermore, we formalize a variant of the Newton interpolation
specialized for integer polynomials, which will abort early and conclude that no
integer interpolation polynomial exists, namely as soon as the first division of
two integers in the interpolation computation yields a non-zero remainder.

Finally, we integrate a divisibility test for integer polynomials, since polynomial
divisibility test is by default available only for fields. The algorithm enjoys the
same early abortion property as the Newton interpolation for integers.

4.2 Factorization Oracles

We provide two different factorization oracles: a small Haskell program that
communicates with Mathematica, and an implementation within Isabelle/HOL.
The latter can be used within an Isabelle session (by eval , etc.) as well as in
generated Haskell or ML code.

They both use the same wrapper which converts the factorization over Q to
a factorization over Z, where the latter factorization can assume a square-free
and content-free integer polynomial, represented as a coefficient list. The oracle
is integrated as an unspecified constant:

consts factorization-oracle-int-poly :: int list ⇒ int list list

The internal oracle implements Berlekamp’s factorization algorithm in com-
bination with Hensel lifting [9, Section 4.6.2]. Berlekamp’s algorithm involves
matrices and polynomials over finite fields (Z modulo some prime p). Here, we
reuse certified code for polynomials and matrices whenever conveniently possible;
however, the finite fields cannot be represented as a type in Isabelle/HOL since
the prime p depends on the input polynomial to be factored. As a consequence,
we could not use the standard polynomial library of Isabelle directly. Instead, we
invoke the code generator to obtain the various certified algorithms on polyno-
mials as ML-code, then manually replace the field operations by the finite field
operations, and finally define these algorithms as new functions within Isabelle.

10

Table 3. Comparing factorization algorithms

Berlekamp-Hensel Mathematica Kronecker

factorization of h, degree 12 0.0s 0.3s 0.6s
factorization of j , degree 27 0.0s 0.3s > 24h

evaluation of
∑5

i=1
3
√
i 17.8s 9.1s –

evaluation of
∑6

i=1
3
√
i 63.9s 57.7s –

Eventually, we had a view on all code equations for polynomials, and detected
potential optimizations in the algorithm for polynomial long division.6

The same problem happens for the matrix operations; however, since the
matrix theory is our formalization, we just modified it. We adjusted some of the
relevant algorithms so that they no longer rely upon the type class field , but
instead take the field operations as parameters. Then in the oracle we directly
apply these generalized matrix algorithms, passing the field operations for finite
fields as parameters.

We conclude this section with experimental data where we compare the
different factorizations in Table 3. Here, polynomial h is taken from Example 1
and j is the unique minimal monic polynomial representing

∑5
i=1

3
√
i, which looks

like −64437024420 + 122730984540x+ . . .+ x27.
The 0.3s of Mathematica is explained by its start-up time. We can clearly

see that Kronecker’s algorithm is no match against the oracles, which is why we
did not even try Kronecker’s algorithm in computing the sums of cubic roots
examples – these experiments involve factorizations of polynomials of degree 81.
At least on these examples, our internal factorization oracle seems to be not too
bad, in comparison with Mathematica (version 10.2.0).

5 Real Algebraic Numbers

At this point, we have fully formalized algorithms which, given algebraic numbers
a and b represented as roots of rational polynomials f and g, resp., computes a
rational polynomial h having c as a root, where c is any of a+ b, a · b, −a, 1

a , and
n
√
a. To uniquely represent an algebraic number, however, we must also provide

an interval [l, r] in which c is the only root of h.
For c = −a and c = 1

a , bounds can be immediately given from the bound
[l, r] for a: take [−r,−l] and [1r ,

1
l], resp. For the other arithmetic operations, we

formalized various bisection algorithms.

5.1 Separation of Roots

Our main method to separate roots via bisection is based on a root-counting
function rif for polynomial f , such that rif l r is the number of roots of f in

6 These optimizations became part of the development version of Isabelle (May 2016).

11

the interval [l, r]. Internally, rif is defined directly for linear polynomials, and is
based on Sturm’s method for nonlinear polynomials.

First, we extend the existing formalization of Sturm’s method by Eberl [6],
which takes a real polynomial and real bounds, so that it can be applied on
rational polynomials with rational bounds; nevertheless, the number of real roots
must be determined. This extension is crucial as we later implement the real
numbers by the real algebraic numbers via data refinement [7]; at this point we
must not yet use real number arithmetics. The correctness of this extension is
shown mainly by proving that all algorithms utilized in Sturm’s method can be
homomorphically extended. For instance, for Sturm sequences we formalize the
following result:

lemma sturm (real-of-rat-poly f) = map real-of-rat-poly (sturm-rat f)

For efficiency, we adapt Sturm’s method for our specific purpose. Sturm’s
method works in two phases: the first phase computes a Sturm sequence, and
the second one computes the number of roots by counting the number of sign
changes on this sequence for both the upper and the lower bounds of the interval.
The first phase depends only on the input polynomial, but not on the interval
bounds. Therefore, for each polynomial f we precompute the Sturm sequence
once, so that when a new interval is queried, only the second phase of Sturm’s
method has to be evaluated. This can be seen in the following code equation:

definition count-roots-interval-rat f =
(let fs = sturm-squarefree-rat f (* precompute *)

in . . . (λ l r. sign-changes-rat fs l − sign-changes-rat fs r + . . .) . . .)

For this optimization, besides the essential (f, l, r) our internal representation
additionally stores a function ri :: Q → Q → N which internally stores the
precomputed Sturm sequence for f .

With the help of the root-counting functions, it is easy to compute a required
interval. For instance, consider the addition of a and b, each represented by
(f, la, ra) and (g, lb, rb), and we already have a polynomial h which has a + b
as one of its roots. If rih (la + lb) (ra + rb) = 1, then we are done. Otherwise,
we repeat bisecting the intervals [la, ra] and [lb, rb] with the help of rif and rig.
Similar bisections are performed for multiplication and n-th roots.

For further efficiency, we formalize the bisection algorithms as partial func-
tions [10]. This is motivated by the fact that many of these algorithms terminate
only on valid inputs, and runtime checks to ensure termination would be an over-
head. In order to conveniently prove the correctness of the algorithms, we define
some well-founded relations for inductive proofs, which are reused for various
bisection algorithms. For instance, we define a relation based on a decrease in the
size of the intervals by at least δ, where δ is the minimal distance of two distinct
roots of some polynomial.

Finally, we tighten the intervals more than what is required to identify the
root. This is motivated as follows. Assume that the interval [2, 10000] identifies a
real root a ≈ 3134.2 of a polynomial f . Now, consider computing the floor bac,

12

which requires us to bisect the interval until we arrive at [3134.003, 3134.308]. It
would be nice if we could update the bounds for a to the new tighter interval at
this point. Unfortunately, we are not aware of how this can be done in a purely
functional language. Hence, every time we invoke bac or other operations which
depends on a, we have to redo the bisection from the initial interval. Therefore, it
is beneficial to compute sufficiently tight intervals whenever constructing algebraic
numbers. Currently we limit the maximal size of the intervals by 1

8 .

5.2 Comparisons of Algebraic Numbers

Having defined all arithmetic operations, we also provide support for comparisons
of real algebraic numbers, as well as membership test in Q, etc. For membership
in Q, we formalize the rational root test which we then integrate into a bisection
algorithm. Comparison is, in theory, easy: just compute x− y and determine its
sign, which is trivial, since we have the invariant that the signs of the interval
bounds coincide. This naive approach however requires an expensive resultant
computation. Hence we pursue the following alternative approach: To compare
two algebraic numbers a and b, represented by (f, la, ra) and (g, lb, rb),

– we first decide7 a = b by testing whether gcd f g has a root in [la, ra]∩ [lb, rb].
The latter property can be determined using Sturm’s method; and

– if a 6= b, then bisect the intervals [la, ra] and [lb, rb] until they become disjoint.
Afterwards we compare the intervals to decide a < b or a > b.

Note that the recursive bisection in the second step is terminating only if it is
invoked with a 6= b. At this point, Isabelle’s partial-function command becomes
essential. Note also that specifying the algorithm via function prohibits code
generation.

If we had a proof that the internal polynomials are irreducible, then the first
step could be done more efficiently, since then f 6= g implies a 6= b. We leave it
for future work to formalize more efficient factorization algorithms.

5.3 Types for Real Algebraic Numbers

As the internal representation of algebraic numbers, besides the essential (f, l, r)
and already mentioned ri, we store another additional information: a flag ty of
type poly-type, indicating whether f is known to be monic and irreducible (Monic-
Irreducible) or whether this is unknown (Arbitrary-Poly). We initially choose
Arbitrary-Poly as ty for non-linear polynomials, and Monic-Irreducible for linear
polynomials after normalizing the leading coefficient. If we have a complete
factorization, we may set the polynomial type to Monic-Irreducible; however,
this would require the invocation of the slow certified factorization algorithm.

In the formalization we create a corresponding type abbreviation for the
internal representation (an option type where None encodes the number 0), then
define an invariant rai-cond which should be satisfied, and finally enforce this

7 We thank one of the anonymous reviewers for pointing us to this equality test.

13

invariant in the type real-alg-intern. For the specification of algorithms on type
real-alg-intern, the lifting and transfer package has been essential [8].

type-synonym rai-intern = (poly-type× root-info× rat poly× rat× rat)option
definition rai-cond tuple = (case tuple of Some (ty,ri,f,l,r) ⇒

f 6= 0 ∧ unique-root f l r ∧ sgn l = sgn r ∧ sgn r 6= 0 ∧ . . . | None ⇒ True)
typedef real-alg-intern = Collect rai-cond

Then, all arithmetic operations have been defined on type real-alg-intern.
In order to implement the real numbers via real algebraic numbers, we did one

further optimization, namely integrate dedicated support for the rational numbers.
The motivation is that most operations can be implemented more efficiently,
if one or both arguments are rational numbers. For instance, for addition of
a rational number with a real algebraic number, we provide a function add-
rat-rai :: rat ⇒ real-alg-intern ⇒ real-alg-intern which does neither require a
resultant computation, nor a factorization.

Therefore, we create a new datatype real-alg-dt , which has two constructors:
one for the rational numbers, and one for the real algebraic numbers whose
representing polynomial has degree at least two. This invariant on the degree is
then ensured in a new type real-alg-dtc, and the final type for algebraic numbers
is defined as a quotient type real-alg on top of real-alg-dtc, which works modulo
different representations of the same real algebraic numbers. Here, real-of-radtc is
the function that delivers the real number which is represented by a real algebraic
number of type real-alg-dtc.8

quotient-type real-alg = real-alg-dtc / λ x y. real-of-radtc x = real-of-radtc y

Now we provide the following code equations to implement the real numbers
via real algebraic numbers by data refinement, where real-of :: real-alg ⇒ real is
converted into a constructor in the generated code.

lemma plus-real-alg[code]: (real-of x) + (real-of y) = real-of (x + y)
(* similar code lemmas for =, <, −, *, /, floor, etc. *)

Note that in the lemma plus-real-alg , the left-hand side of the equality is addition
for type real , whereas the right is addition of type real-alg .

We further prove that real algebraic numbers form an Archimedean field.

instantiation real-alg :: floor-ceiling (* includes Archimedean field *)

Finally, we provide a function real-roots-of-rat-poly :: rat poly ⇒ real list
which computes all real roots of a non-zero rational polynomial. It first factors
the polynomial, and then for each factor it either uses a closed form to determine
the roots, or computes intervals that uniquely identify each root of the factor
and returns the corresponding real algebraic numbers. Below, rpoly denotes the
evaluation of a rational polynomial at a real or complex point.

8 Note that the quotient type can be in principle defined also directly on top of real-
alg-dt , such that the quotient and invariant construction is done in one step, but
then code generator will fail in Isabelle 2016.

14

lemma assumes f 6= 0
shows set (real-roots-of-rat-poly f) = {a :: real. rpoly f a = 0}

6 Complex Algebraic Numbers

All of the results on resultants have been developed in a generic way, i.e., they
are available for both real and complex algebraic numbers. Hence, in principle
one can pursue a similar approach as in Section 5 to integrate complex algebraic
numbers, one just has to replace Sturm’s method by a similar method to separate
complex roots, e.g., by using results of Kronecker [15, Section 1.4.4].

Since we are not aware of any formalization of such a method, instead we just
stick to Isabelle’s implementation of complex numbers, i.e., pairs of real numbers
representing the real and imaginary part. Note that this is also possible in the
algebraic setting: a complex number is algebraic if and only if both the real and
the imaginary part are algebraic.

With this representation, all of the following operations become executable on
the complex numbers for free: +, −, ∗, /,

√
·, =, and complex conjugate. These

operations are already implemented via operations on the real numbers, and
those are internally computed by real algebraic numbers via data refinement.

The only operation that is not immediate is a counterpart of real-roots-of-rat-
poly – a method to determine all complex roots of a rational polynomial f . Here,
the algorithm proceeds as follows, excluding optimizations.

– Consider a complex root a+bi of f for a, b ∈ R. Since a = 1
2 ((a+bi)+(a−bi)),

a is a root of the rational polynomial g = poly-mult-rat 1
2 (poly-add f f).

Here, the first f in poly-add f f represents a + bi and the second f rep-
resents a − bi; complex conjugate numbers share the same representing
polynomials. Similarly, since b = 1

2i ((a + bi) − (a − bi)), b is a root of
h = poly-mult [:1,0,4:] (poly-add f (poly-uminus f)), where [:1,0,4:] is the
polynomial 1 + 4x2 with root 1

2i .
– Let C be the set of all numbers a+bi such that a ∈ real-roots-of-rat-poly g and
b ∈ real-roots-of-rat-poly h. Then C contains at least all roots of f . Return
{c ∈ C. f(c) = 0} as the final result.

The actual formalization of complex-roots-of-rat-poly contains several special
measures to improve the efficiency, e.g., factorizations are performed in between,
explicit formulas are used, etc. The soundness result looks as in the real case.

lemma assumes f 6= 0
shows set (complex-roots-of-rat-poly f) = {a :: complex. rpoly f a = 0}

The most time-consuming task in complex-roots-of-rat-poly is actually the
computation of {c ∈ C. f(c) = 0} from C. For instance, when testing f (c) = 0 in
Example 1, multiplications like b · b occur. These result in factorization problems
for polynomials of degree 144.

With the help of the complex roots algorithm and the fundamental theorem of
algebra, we further develop two algorithms that factor polynomials with rational

15

coefficients over C and R, resp. Factorization over C is easy, since then every
factor corresponds to a root. Hence, the algorithm and the proof mainly take
care of the multiplicities of the roots and factors. Also for the real polynomials,
we first determine the complex roots. Afterwards, we extract all real roots and
group each pair of complex conjugate roots. Here, the main work is to prove that
for each complex root c, its multiplicity is the same as the multiplicity of the
complex conjugate of c.

7 Displaying Algebraic Numbers

We provide two approaches to display real algebraic numbers.
The first one displays the approximative value of an algebraic number a.

Essentially, the rational number b1000ac1000 is computed and displayed as string. For
instance, the first root of polynomial g in Example 1 is displayed as “∼ -0.569”.

The second approach displays a number represented by (ty, ri, f, l, r) exactly
as the string “root #n of f”, provided that ty = Monic-Irreducible and that n
is the number of roots of f in the interval (−∞, r]. In order to determine the
value of n, we just apply Sturm’s method. In case ty 6= Monic-Irreducible, at this
point we invoke the expensive certified factorization.

Note that displaying a number must be a function of type real-alg ⇒ string ,
i.e., the resulting string must be independent of the representative. Clearly, this
is the case for the first approach. For the second approach we need a uniqueness
result, namely that every algebraic number a is uniquely represented by a monic
and irreducible polynomial. To this end, we first formalize the result, that the
GCD of two rational polynomials stays the same if we embed Q into R or C.

lemma map-poly of-rat (gcd f g) = gcd (map-poly of-rat f) (map-poly of-rat g)

Using this lemma, we provide the desired uniqueness result.

lemma assumes algebraic a shows ∃! f. alg-poly a f ∧ monic f ∧ irreducible f

Our formalization of this statement works along the following line. Assume f and
g are two different monic and irreducible rational polynomials with a common
real or complex root a. That is, f and g have a common factor x − a as a
real or complex polynomial and hence, the GCD of f and g (over R or C) is a
non-constant polynomial. On the other hand, the GCD of f and g over Q must
be a constant: it cannot be a proper factor of f or g since the polynomials are
irreducible over Q, and it cannot be f or g itself, since this contradicts monicity
and f 6= g.

8 Conclusion

We integrated support for real and complex algebraic numbers in Isabelle/HOL.
Although all arithmetic operations are supported, there remain some open tasks.

16

A formalization of an equivalent to Sturm’s method for the complex numbers
would admit to represent the roots in Example 1 just as root #(1,2,3,4) of f ,
without the need for high-degree polynomials for the real and imaginary part.

A certified efficient factorization algorithm would also be welcome: then the
implementation of comparisons of algebraic numbers could be simplified and it
would allow to display more algebraic numbers precisely within reasonable time.

Finally, it would be useful to algorithmically prove that the complex alge-
braic numbers are algebraically closed, so that one is not restricted to rational
coefficients in the factorization algorithms over R and C.

Acknowledgments We thank the anonymous reviewers for their helpful comments.
The early abortion in our divisibility test for integer polynomials is due to
Sebastiaan Joosten. This research was supported by the Austrian Science Fund
(FWF) project Y757.

References

1. Brown, W.S.: The subresultant PRS algorithm. ACM Trans. Math. Softw. 4(3),
237–249 (1978)

2. Cohen, C.: Construction of real algebraic numbers in Coq. In: ITP 2012. LNCS,
vol. 7406, pp. 67–82 (2012)

3. Cohen, C., Djalal, B.: Formalization of a Newton series representation of polynomials.
In: CPP 2016. pp. 100–109. ACM (2016)

4. Cohen, C., Mahboubi, A.: Formal proofs in real algebraic geometry: from ordered
fields to quantifier elimination. Logical Methods in Computer Science 8(1:02), 1–40
(2012)

5. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. Journal
of the ACM 14, 128–142 (1967)

6. Eberl, M.: A decision procedure for univariate real polynomials in Isabelle/HOL.
In: CPP 2015. pp. 75–83. ACM (2015)

7. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL.
In: ITP 2013. LNCS, vol. 7998, pp. 100–115 (2013)

8. Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in
Isabelle/HOL. In: CPP 2013. LNCS, vol. 8307, pp. 131–146 (2013)

9. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical
Algorithms, 2nd Edition. Addison-Wesley (1981)

10. Krauss, A.: Recursive definitions of monadic functions. In: PAR 2010. EPTCS,
vol. 43, pp. 1–13 (2010)

11. Li, W., Paulson, L.C.: A modular, efficient formalisation of real algebraic numbers.
In: CPP 2016. pp. 66–75. ACM (2016)

12. Mahboubi, A.: Proving formally the implementation of an efficient gcd algorithm
for polynomials. In: IJCAR 2006. LNCS, vol. 4130, pp. 438–452 (2006)

13. Mishra, B.: Algorithmic Algebra. Texts and Monographs in Computer Science,
Springer (1993)

14. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283 (2002)

15. Prasolov, V.V.: Polynomials. Springer (2004)
16. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL. In:

CPP 2016. pp. 88–99. ACM (2016)

17

	Algebraic Numbers in Isabelle/HOL
	René Thiemann and Akihisa Yamada

