
Automatic Certification of
Termination Proofs

dissertation

by

Christian Sternagel

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of doctor of science

advisor: Univ.-Prof. Dr. Aart Middeldorp, Informatik

Innsbruck, August 10, 2010

Automatic Certification of
Termination Proofs

Automatic Certification of
Termination Proofs

Christian Sternagel

August 10, 2010

This document was prepared with LATEX using the KOMA-Script packages.

for mikro

Preface

What you hold in hand—my doctoral thesis—is the result of about four hard/
exciting/frustrating/enjoyable years of work. When I started back in 2006, I
had the title of my thesis and the ambition of formalizing at least the depen-
dency pair transformation and the subterm criterion. What I did not have, was
any real experience in using Isabelle/HOL (or any other interactive theorem
prover, for that matter). It turned out that coming to grips with Isabelle took
quite some time, especially, since there where many decisions when designing
IsaFoR, which had a high impact on the smoothness of later formalizations. Not
all of them where made for the better in the first run. So, I spent a lot of time
on the basic layer about abstract rewriting and term rewriting and did rewrite
everything several times. At some point—after this initial phase reached a
fixed point and my co-developer, René Thiemann, joined—the project sud-
denly gained momentum. This was also, when we settled on code-generation
for obtaining an efficient certifier. Soon, our combined efforts resulted in the
first version (0.99) of CeTA in March 2009. From that point onwards, CeTA’s
release cycle was quite tight. Until, in the current version (1.15; released in
August 2010), most of the powerful termination techniques that are used by
termination tools, where supported by CeTA.

The development of IsaFoR/CeTA took place partly in parallel with preparing
my thesis, during which I adapted to two releases of Isabelle/HOL and at least
five releases of CeTA. First, I thought that most of the work was done after
finishing all the formalizations in Isabelle. Far from it! Just because you have
proven something, does not mean that you have a nicely structured and easily
understandable proof. Thus, I put a lot of work into rewriting existing proofs,
just to make them better structured and clearer. Sometimes, I could even
remove large parts of proofs (mostly concerned with technical details), since at
the time of first proving, I just did not exploit Isabelle’s automatic methods to
their full potential.

vii

Preface

Additionally, I decided that all of the proofs which are part of my thesis, should
be checked automatically, using Isabelle’s document preparation features. At
the same time, I wanted to use notation that is also used in rewriting literature.
To achieve both of these goals together, I finally ended up, entering ‘gibberish’
in the sources of my thesis. To demonstrate what I mean, here is what I had
to type to get a nicely typeset and automatically checked proof of Lemma 4.1
(which is one of the shortest proofs of our formalization):

lemma not_wf_trs_imp_not_SN_rstep:
assumes "\<not> \<^raw:\wftrs{>\<R>\<^raw:}>"
shows "\<not> \<^raw:\SNrstep{>\<R>\<^raw:}>"

proof -
from assms obtain l r where "(l, r) \<in> \<R>"
and bad_rule: "\<^raw:\isvar{>l\<^raw:}> \<or> (\<exists>x.
x \<in> \<^raw:\varsterm{>r\<^raw:}>
-\<^raw:\varsterm{>l\<^raw:}>)"

unfolding wf_trs_def’ by auto
from bad_rule show ?thesis
proof
assume "\<^raw:\isvar{>l\<^raw:}>"
then obtain x where l: "l = Var x" by (cases l) simp_all
(*<*)
let ?\<sigma> = "\<^raw:\subst{>x\<^raw:}{>r\<^raw:}>"
(*>*)
let ?S = "\<lambda>i. \<^raw:\subapp{>(Var x)\<^raw:}{>(
\<^raw:\subst{>x\<^raw:}{>r\<^raw:}>
\<^raw:\pow{>i\<^raw:}>)\<^raw:}>"

have "\<forall>i. (?S i) \<^raw:\rstep[>\<R>\<^raw:]>
(?S (\<^raw:\suc{>i\<^raw:}>))"

proof%fold
fix i
from rstep.subst[OF rstep.id[OF ‘(l, r) \<in> \<R>‘],
of "?\<sigma>\<^raw:\pow{>i\<^raw:}>"]
show "(?S i) \<^raw:\rstep[>\<R>\<^raw:]>
(?S (\<^raw:\suc{>i\<^raw:}>))"

by (simp add: l(*<*)subst_def(*>*))
qed
thus ?thesis by best

next
assume "\<exists>x.
x \<in> \<^raw:\varsterm{>r\<^raw:}>

viii

-\<^raw:\varsterm{>l\<^raw:}>"
then obtain x where "x \<in> \<^raw:\varsterm{>r\<^raw:}>
-\<^raw:\varsterm{>l\<^raw:}>"
(*<*)and empty: "vars_term l \<inter> {x} = {}"(*>*)
by auto

hence "r \<unrhd> Var x" by (induct r) auto
then obtain C where (*<*)r:(*>*)"r =
\<^raw:\ctxtapp{>C\<^raw:}{>Var x\<^raw:}>"
by (rule supteqp_ctxt_E)

(*<*)
let ?\<sigma> = "\<^raw:\subst{>x\<^raw:}{>l\<^raw:}>"
(*>*)
let ?S = "\<lambda>i. \<^raw:\ctxtapp{>(
(\<^raw:\subappctxt{>C\<^raw:}{>
\<^raw:\subst{>x\<^raw:}{>l\<^raw:}>\<^raw:}>)
\<^raw:\pow{>i\<^raw:}>)\<^raw:}{>l\<^raw:}>"

(*<*)
from subst_apply_id’[OF ‘vars_term l \<inter> {x} = {}‘,
of "?\<sigma>"]
have l: "\<^raw:\subapp{>l\<^raw:}{>
?\<sigma>\<^raw:}> = l" by simp

(*>*)
have "\<forall>i. (?S i) \<^raw:\rstep[>\<R>\<^raw:]>
(?S (\<^raw:\suc{>i\<^raw:}>))"

proof%fold
fix i
from rstepI[OF ‘(l, r) \<in> \<R>‘,
of _ "(C \<cdot>c ?\<sigma>)^i" ?\<sigma>]
have "(((C \<cdot>c ?\<sigma>)^i)\<langle>l\<rangle>,
((C \<cdot>c ?\<sigma>)^i \<circ>c
(C \<cdot>c ?\<sigma>)^Suc 0)
\<langle>l\<rangle>) \<in> rstep \<R>"

unfolding l r subst_apply_term_ctxt_apply_distrib
by (simp add: subst_def)

thus "(?S i, ?S (Suc i)) \<in> rstep \<R>"
unfolding ctxt_power_compose_distr[symmetric] by simp

qed
thus ?thesis by best

qed
qed

ix

Preface

A final word of warning: theorem proving is addictive.

Acknowledgments

I am grateful to my supervisor Aart Middeldorp, who encouraged me towards
interactive theorem proving in the first place.

On my way of learning Isabelle, I am especially indebted to Alexander Krauss,
a never-ending source of answers to my many questions about Isabelle. Further,
my thank goes to the Isabelle developers and the whole Isabelle community,
both are very kind to newcomers and anxious to answer questions and solve
problems.

Among my colleagues in Innsbruck, I am especially grateful to Georg Moser
and Harald Zankl, who had to convince me several times that I would be able
to manage my formalizations in time. Harald deserves a second mention, for
providing many nice ‘Reindlings’ and pizze.

My co-developer René Thiemann was irreplaceable in pushing CeTA. Without
him, CeTA would support less than half of the techniques that it does now.

It goes without saying that my family and friends have been crucial in my life
and thus have also influenced this work. I would like to thank them all for the
support given during the preparation of my thesis, especially my companion in
life, Nicola Blassnig (mikro), who had to bear me stressed out and doubtful.

Finally, I would like to thank the Austrian Science Fund, which supported my
research through the FWF project P18763.

Christian Sternagel

Innsbruck, Austria
August 10, 2010

x

http://bar.wikipedia.org/wiki/Reindling
http://www.fwf.ac.at/de/abstracts/abstract.asp?L=D&PROJ=P18763

Contents

Preface vii

1 Introduction 1
1.1 Contributions . 4
1.2 Overview . 6
1.3 Terminology . 6
1.4 Using Isabelle/IsaFoR . 7
1.5 Chapter Notes . 7

2 Isabelle/HOL 9
2.1 Isabelle - A Generic Theorem Prover 10
2.2 Higher-Order Logic . 11

2.2.1 Logic . 12
2.2.2 Functional Programming 14

2.3 Common Data Types and Functions 15
2.3.1 Tuples . 15
2.3.2 Natural Numbers . 16
2.3.3 Options . 16
2.3.4 Lists . 17

2.4 Combining and Modifying Facts 19
2.5 Some Isar Idioms . 20
2.6 Chapter Notes . 22

3 Abstract Rewriting 25
3.1 Abstract Rewriting in Isabelle 25
3.2 Newman’s Lemma . 28
3.3 Non-Strict Ending . 31
3.4 Chapter Notes . 33

xi

Contents

4 Term Rewriting 35
4.1 First-Order Terms . 36

4.1.1 Auxiliary Functions on Terms 38
4.2 Term Rewrite Systems . 39
4.3 Contexts . 41
4.4 Subterms . 42
4.5 Substitutions . 43
4.6 Rewrite Relation . 44
4.7 Chapter Notes . 48

5 Dependency Pair Framework 49
5.1 Minimal Counterexamples . 50
5.2 Dependency Pairs . 57

5.2.1 Termination of TRSs using Dependency Pairs 58
5.3 Finiteness and Processors . 60
5.4 Chapter Notes . 62

6 Subterm Criterion 63
6.1 Original Version . 64
6.2 Subterm Criterion Processor . 65
6.3 Generalized Subterm Criterion 65
6.4 Generalized Subterm Criterion Processor 66

6.4.1 Soundness . 67
6.5 Practicability . 74

6.5.1 Identity Mappings . 74
6.5.2 Rewrite Steps . 76

6.6 Chapter Notes . 77

7 Signature Extensions 79
7.1 Well-Formed Terms . 79
7.2 Signature Extensions Preserve Termination 81

7.2.1 Cleaning Preserves Infinite Chains 82
7.2.2 DP Transformation for Well-Formed Terms is Complete 83
7.2.3 Putting It All Together 87

7.3 Signature Extensions and Finiteness 89
7.4 Applications . 96
7.5 Chapter Notes . 96

xii

Contents

8 Root-Labeling 97
8.1 Semantic Labeling . 98
8.2 Plain Root-Labeling . 100
8.3 Root-Labeling Processor . 100
8.4 Closure Under Flat Contexts 101
8.5 Touzet’s SRS . 104
8.6 Chapter Notes . 105

9 Certification 107
9.1 Proof Format . 107
9.2 Check Functions . 108

9.2.1 DP Transformation . 109
9.2.2 Subterm Criterion . 110
9.2.3 Closure Under Flat Contexts 111

9.3 Code-Extraction . 113
9.4 Chapter Notes . 114

10 Conclusion 115
10.1 Related Work . 116
10.2 Applications and Future Work 117
10.3 Assessment . 118

A Auxiliary Proofs 121
A.1 General . 121
A.2 Abstract Rewriting . 122
A.3 Term Rewriting . 123
A.4 Subterm Criterion . 127
A.5 Signature Extensions . 134

B Publications 137

Bibliography 141

xiii

Chapter 1

Introduction

The man of science has learned to believe in
justification, not by faith, but by verification.

Thomas Henry Huxley
On the Advisableness of Improving Natural Knowledge

Proving the correctness of computer software is of utmost importance for
safety-critical systems (like fire alarms, fly-by-wire systems, human spaceflight,
nuclear reactors, robotic surgery, etc.). A crucial part of proving correctness is
to show that a computer program always yields a result, as it may run forever
otherwise. This property is called termination and is undecidable in general.
Considering the plethora of existing programming languages as well as the
rate at which new languages arise, basic facts about programming languages
are usually handled on a more abstract level, using some mathematical model
of computation instead of a specific programming language. This facilitates
mathematical reasoning and induces facts that are applicable to all concrete
implementations. We use term rewriting as model of computation.

In term rewriting, we consider term rewrite systems, instead of programs. A
term rewrite system is a set of simple rules that describes how to compute a
result from some given input. There are already several transformations, such
that termination of a program (written in a specific programming language),
follows from the termination of a term rewrite system that has been generated
from this program. Hence, termination of term rewrite systems is of practical
use.

Now, the question arises: How do we prove termination of a given term rewrite
system? This has been a topic of research, for several decades. Many so called

1

Chapter 1 Introduction

termination techniques have been developed. Some of them are convenient for
proving termination by hand, others are especially suitable for automation.
Most of these techniques have been integrated in at least one of several auto-
mated termination tools. These tools are programs that take a term rewrite
system and try to either prove or disprove termination. Aside from the long
(at least for computer science) history of termination analysis, there are still
recent and powerful methods for proving termination automatically. Thus, by
using a termination tool it is sometimes possible to prove termination of a term
rewrite system at the touch of a button. This, on the other hand, may give
rise to an automatic correctness proof for a given computer program and thus
increases software safety in general.

But wait a minute! We are trying to prove correctness of a program by using
another program: the termination tool. How do we know that the termination
tool is correct? The short answer is: we do not. Indeed, there have already
been some occasions, where a termination tool delivered a wrong proof. This is
not too surprising, since the average termination tool is a complex piece of soft-
ware that has to combine many different termination techniques in an efficient
way. Combining many different techniques additionally results in huge proofs:
modern termination tools may easily generate proofs reaching sizes of several
megabytes. That means, a human would have to read hundreds of pages of
text, in order to check the correctness of such a proof. This is clearly insufficient
to reliably check the correctness of termination proofs. There are mainly two
approaches of avoiding manual checking and still maintaining a high level of
confidence in the correctness of the generated proofs: The first approach is to
formally verify the correctness of a termination tool. The main disadvantage
being that whenever the tool is modified (to make it more efficient or more
powerful by adding a new termination technique, say), the correctness proof
may break. The second approach is to implement a trustworthy termination
proof checker that reads a given termination proof and checks its correctness
automatically. The main advantage being that termination tools do not have
to be modified much. It suffices to generate proofs in a format that can be read
by the proof checker. We take the second alternative.

The remaining obstacles are: having a common proof format and develop-
ing a trustworthy termination proof checker. We know of three projects that
aim at checking termination proofs automatically (including our own). The
first obstacle has been settled in cooperation of all three projects by introduc-

2

ing a common XML format for termination proofs.1 The second obstacle is
generally tackled by using interactive theorem provers. In our project we use
Isabelle/HOL.

An interactive theorem prover allows to conduct computer-aided mathemati-
cal proof. This way of proving is akin to a proof on paper, but with two main
differences: Every step in the proof is machine-checked. And often, we need
to provide much more detail than in a paper-proof in order to ‘convince’ the
theorem prover of the correctness of our workings. In the following, we mean
computer-aided mathematical proof, when we speak about formalizing some-
thing. The results of formalizing theorems are highly reliable mathematical
proofs. Additionally, some theorem provers (like Isabelle/HOL) provide facil-
ities to extract programs from formalized proofs. Such programs are correct
by construction and are thus much more trustworthy than handcrafted code.
Just to be sure, we will never reach a 100% certainty that some program is
correct. It is however important to minimize the remaining uncertainty as far
as possible. There is a nice motivation by Dijkstra (1970), given in his Notes
on Structured Programming :

If the chance of correctness of an individual component equals p,
the chance of correctness of a whole program, composed of N such
components, is something like P = pN . As N will be very large, p
should be very, very close to 1 if we desire P to differ significantly
from zero!

So if we want to trust a termination proof, composed of many different termina-
tion techniques, we better reach a high assurance that each involved technique
is applied correctly (and correct on its own).

Our termination proof checker is built in two stages:

• First, we formalize all the mathematical theory that is used in auto-
mated termination tools. Additionally, we formalize functions that check,
whether some termination technique is applied correctly. This is done in
our Isabelle Formalization of Rewriting.

• Then, we extract the termination proof checker using Isabelle’s code-
generation facilities. Resulting in our Certified Termination Analyser.

1http://cl-informatik.uibk.ac.at/software/cpf

3

http://cl-informatik.uibk.ac.at/software/cpf

Chapter 1 Introduction

Literature Termination Tool

Isabelle/HOL

IsaFoR CeTA

XML Proof

algorithms & techniques

theorems &
proofs

code-extraction

TRS

accept/error

Figure 1.1: The General Picture

The general picture is depicted in Figure 1.1, where solid lines are used for
entities that are fixed once and for all (like theorems about termination tech-
niques) and dashed lines denote inputs and outputs that vary (like a specific
TRS). Termination tools implement termination techniques and algorithms
that are described in the literature. For certification, we formalize theorems
about those techniques and algorithms in Isabelle/HOL. On the result, we ap-
ply Isabelle’s code-extractor to obtain our certifier. Which, in turn, is run on a
termination proof that was generated by some termination tool on some TRS.
The final outcome is a fully verified answer, whether the generated proof is
correct. In case it is not, we obtain an informative error message.

In the following we indicate our specific contributions.

1.1 Contributions

As already stated above, the IsaFoR/CeTA project mainly arose out of the need
to automatically check termination proofs that are generated by termination

4

1.1 Contributions

tools. Additionally, we wanted to give an Isabelle formalization of term rewrit-
ing that can be used as the bases for related projects. Our main contributions
to IsaFoR/CeTA are as follows:

Dependency Pair Transformation We formalized the dependency pair trans-
formation and the corresponding theorem, stating that the termination
of a given term rewrite system is equivalent to finiteness of the resulting
dependency pair problem.

Subterm Criterion We formalized the subterm criterion, a termination tech-
nique for the dependency pair framework. This also served as the basis for
a variant of the size-change principle that can be used to prove finiteness
of dependency pair problems.

Signature Extensions Building on the dependency pair transformation, we
gave an alternative (and in our opinion elegant) proof of the fact that
signature extensions of term rewrite systems preserve termination. Ad-
ditionally, we first proved and formalized that for (a certain class of)
dependency pair problems, signature restrictions reflect (minimal) infi-
nite chains.

Root-Labeling We formalized root-labeling, a transformation on term rewrite
systems as well as dependency pair problems, based on semantic labeling.
However, in most cases root-labeling can only be applied after another
transformation, the so called closure under flat contexts. This is strongly
related to signature extensions.

Furthermore, we formalized large parts of the basic infrastructure available in
IsaFoR. Starting from abstract rewriting, via terms, contexts, positions, sub-
stitutions, and so on, up to the dependency pair framework (today’s de facto
standard for modular termination proofs). Finally, we contributed to CeTA
specific developments, like providing informative error messages, in the case
that a proof is not accepted. These last two activities have been done in strong
collaboration with my co-developer and hence are not described in the thesis.

The following section describes where to find more detailed descriptions of our
contributions and the IsaFoR/CeTA internals in general.

5

Chapter 1 Introduction

1.2 Overview

Since large parts of our work are concerned with formalizing facts about rewrit-
ing using a theorem prover, there are mainly two audiences for our work: re-
searches in term rewriting and researches in theorem proving. Additionally,
we want to stay self-contained, as far a possible. Hence, we will give all the
necessary basics of term rewriting that are used in our formalizations (also,
since those basics form a large part of those formalizations). Furthermore, we
try to provide some basics in theorem proving using Isabelle/HOL. We hope
that this proves interesting for both audiences.

The outline of our thesis is as follows: We start by a short introduction to
interactive theorem proving in Chapter 2. Thus, well equipped, we present
our formalization of abstract rewriting in Chapter 3. This includes a proof of
Newman’s Lemma, to get further acquainted with Isabelle. On top of abstract
rewriting, we formalize (first-order) term rewriting in Chapter 4. Next, comes
the leap from termination of term rewrite systems to finiteness of dependency
pair problems; provided by the dependency pair transformation, formalized in
Chapter 5. This is a crucial part of our formalizations, since it paves the way to
the dependency pair framework, a prerequisite of many termination techniques
that are available in CeTA. Inside the dependency pair framework, so called
processors are used to simplify problems recursively. In Chapter 6, we give our
formalization of the subterm criterion processor. Afterwards, in Chapter 7,
we show how the dependency pair transformation can be used to prove facts
about signature extensions that are itself necessary for the formalization of
several termination techniques. One of those, namely root-labeling, is handled
in Chapter 8. In Chapter 9, we show how computable check functions are
used to code-extract the efficient termination proof checker CeTA. Finally, we
conclude in Chapter 10.

1.3 Terminology

Throughout this thesis by formalizations, we mean proofs and definitions con-
ducted in an interactive theorem prover. Sometimes, we call such proofs
machine-checked or even mechanized. When we talk about proof checking or

6

1.4 Using Isabelle/IsaFoR

certification, we usually mean that we check a termination proof for a given
term rewrite system for its correctness. By code-generation or code-extraction,
we denote the process of automatically creating program source files for some
programming language from a formalization.

1.4 Using Isabelle/IsaFoR

Throughout the text, we will indicate the most important reasoning patterns
for concepts introduced by IsaFoR. This is done inside ‘reasoning boxes’ of the
following shape:

Reasoning about some Concept.
Here we describe how to use Isabelle/IsaFoR to reason about ‘some Concept.’

Also note that for better readability, the document introduces so called syntax
translations for many defined constants of IsaFoR. This means that what you
see in this text, should be close to the usual notation in the literature, but may
differ radically from what you would have to type when using IsaFoR in your
own Isabelle theories. The ‘reasoning boxes’ are also the place, where we will
point out the ASCII versions of such constants.

1.5 Chapter Notes

At the end of each chapter, we give a short summary, indicate related work,
and cite relevant publications from the literature (this avoids breaking the
‘narrative flow’ in the rest of the chapter).

In this chapter, we gave reasons for analyzing termination of term rewrite
systems: the final goal is to prove termination of computer programs, which is
an important part of the verification of programs and results in more reliable
software. We further motivated our interest in the certification of termination
proofs using a theorem prover.

The fact that there is no algorithm that takes some computer program as input
and decides whether it is terminating or not, has been proven by Turing [45].

7

Chapter 1 Introduction

A thorough introduction to term rewriting is given by Baader and Nipkow [2].
The traditional introduction to Isabelle/HOL is the tutorial by Nipkow et al.
[29].

8

Chapter 2

Isabelle/HOL

Beware of bugs in the above code;
I have only proved it correct,

not tried it.

Donald Ervin Knuth

Axiomatic type-classes are definitional.
Type definitions are axiomatic.

Makarius Wenzel
Isabelle Developers Joke

In all our formalizations we use the Isabelle/HOL interactive theorem prover.
Hence, it seems appropriate to give a short introduction to automated reasoning
in general and interactive theorem proving using Isabelle/HOL in particular.
Informally speaking, automated reasoning is concerned with aspects of reason-
ing that may be implemented on a computer. Two subfields are automated
theorem proving and automated proof checking. In automated theorem prov-
ing, a computer program is used to automatically find proofs of mathematical
theorems, whereas in automated proof checking, a computer program merely
checks whether every inference step of a given proof is correct. The combina-
tion of these two tasks is interactive theorem proving, where some parts of a
proof are found automatically, but others have to be filled in by the user in full
detail and it is checked by the machine that every step of the user is according
to the rules.

More specifically, in order to allow a computer program to check or even find
proofs, we need a formal system (logic), describing the facts that may be stated
(formulas) as well as the valid reasoning patterns (inference rules) that are

9

Chapter 2 Isabelle/HOL

available for deriving new valid facts from given valid facts. This is the general
picture. How this is realized in Isabelle/HOL, is discussed in the next section.

2.1 Isabelle - A Generic Theorem Prover

Isabelle itself, is a generic theorem prover. This means that it may be in-
stantiated to specific object-logics (like higher-order logic, in the case of Is-
abelle/HOL). Isabelle’s meta-logic is an intuitionistic fragment of higher-order
logic. The meta-logic is usually denoted by Pure (or sometimes Isabelle/Pure).

The most important constructs of Pure are: ⇒, ≡,
∧

, and =⇒. Of those, ⇒
is the (right-associative) function type constructor, that is, α ⇒ β denotes the
type of functions taking arguments of type α and yielding results of type β. We
write t ::τ , to express that the term t is of type τ . The only primitive type that
is available in Pure is prop, denoting propositions. Any concrete object-logic
specifies what constitutes a proposition (for example, in HOL, every term of
type bool is a proposition). Having types, we can give more information on the
other three constructs, namely

≡ :: α ⇒ α ⇒ prop∧
:: (α ⇒ prop) ⇒ prop

=⇒ :: prop ⇒ prop ⇒ prop

These are the logical connectives of the meta-logic. Here, ≡ denotes meta-level
equality. This is for example used to define new constants in terms of exist-
ing ones. Further,

∧
denotes meta-level universal quantification, for example,∧

x . P x means that the predicate P is true for every argument x. Proving
such statements, would be formulated as proving something about “an arbi-
trary but fixed x,” in a paper-proof. The type of

∧
may be somewhat cryptic

and hence deserves further explanation. Obviously, we have a higher-order con-
struct, taking a function of type α ⇒ prop as argument, where α is the type
of the bound variable. In the end,

∧
x . P x is just syntactic sugar for

∧
(λx . P

x). The intended meaning is that whatever argument we give to the function
λx . P x, the resulting proposition has to be true. Finally, =⇒ denotes (the
right-associative) meta-implication, as in A =⇒ B, which states that A implies
B. In a paper-proof, this would correspond to “assuming A we show B.” There
is syntactic sugar for a chain of meta-implications of the form A1 =⇒ ... =⇒

10

2.2 Higher-Order Logic

An =⇒ B. All the assumptions are grouped together between double-brackets
and are separated by semicolons, resulting in: [[A1; ...; An]] =⇒ B .

Using meta-level universal quantification together with meta-level implication,
we can express inference rules (that is, the rules we must adhere to, inside the
logical setting we choose). For readability, Isabelle drops outermost universal
quantification at the meta-level, that is, the inference rule∧

P Q x . P x =⇒ Q x

is equivalent to the inference rule

P x =⇒ Q x

As a more realistic example, consider the rule for disjunction elimination from
HOL:

disjE : [[P ∨ Q ; P =⇒ R; Q =⇒ R]] =⇒ R

This rule states that for arbitrary P and Q, whenever we know that either P or
Q holds (denoted by P ∨ Q in HOL) and in addition some fact R is derivable
from both of P and Q, then we may conclude that the fact R is true.

Reasoning in the Meta-Logic.
The ASCII versions of the meta-logical constructs are => for the function type con-
structor, == for meta-level equality, !! for meta-level universal quantification, and
==> for meta-level implication. For the double-brackets you have to type [| and |].

2.2 Higher-Order Logic

HOL is an object-logic built on top of Pure. It is an implementation of classical
type theory. Furthermore, there is a huge library containing orderings, sets,
natural numbers, the Axiom of Choice, lists, maps, strings and what is more.
HOL is sometimes described by the informal equation

HOL = Functional Programming + Logic

which gives a rough feeling, what reasoning in HOL is like. In contrast to the
Isabelle tutorial—which uses the now obsolete apply-style for proofs—we exclu-
sively do our formalizations using Isar (standing for Intelligible semi-automated

11

Chapter 2 Isabelle/HOL

reasoning ; surely it is just a coincidence that the river of the same name is
flowing just a few hundred meters from where Isar was developed). Isar is a
(no longer) new style of conducting proofs in Isabelle. A nice feature of Is-
abelle/Isar is that formally checked theory files can be referenced by LATEX
documents, thereby offering the advantage that every proof and every formula
is run through Isabelle in the background. This drastically reduces the chance
of errors in the presented material (of course it is still possible that what is
presented does not coincide with what is claimed to be presented). Using
this feature, also means that every proof is displayed directly in Isar, which (at
least by name) should be intelligible. We believe that after a short initial phase,
where Isar needs getting used to, this kind of presentation makes the structure
of a proof more clear than most mathematical text proofs. Also note that we
freely drop details from proofs, where in our opinion they do not contribute
to an understanding of the proof (still the details that are omitted from the
presentation are present at the level where Isabelle checks our proofs). Parts
of proofs, where we do omit details are marked by “〈proof omitted〉.”

2.2.1 Logic

Concerning the Logic part of the above equation, Isabelle has the usual connec-
tives: = (equality), ∀ (universal quantification), ∃ (existential quantification),
∧ (conjunction), ∨ (disjunction), ¬ (negation), and −→ (implication); as well
as the two constants True (truth) and False (absurdity).

Reasoning in HOL.
The ASCII versions of these connectives are as follows: =, ALL, EX, &, |, ∼, −−>,
True, and False.

Before we have a look at Isabelle’s functional programming features, let us
have a look at an Isabelle/Isar/HOL1 proof. Consider the following Isabelle
proof of the well-known fact that a universal quantifier in the conclusion of an
implication, may be pulled to the front:

lemma example1 :
assumes A −→ (∀ x . P x) shows ∀ x . A −→ P x

1In the following we just write Isabelle, when we mean this combination.

12

2.2 Higher-Order Logic

proof (intro allI impI)
fix x assume A
with assms have ∀ x . P x ..
thus P x ..

qed

This simple example demonstrates already a lot of Isar. In general, a statement
that we want to prove, consists of some (possibly empty) assumptions—that
may be referenced by the name assms inside the proof—together with the
desired conclusion. Additionally we may provide a name, here example1, under
which to store the lemma after a successful proof (for later reference). The first
step in the above proof, that is, intro allI impI applies the introduction rules
for the universal quantifier and implication

allI : (
∧

x . P x) =⇒ ∀ x . P x
impI : (P =⇒ Q) =⇒ P −→ Q

as often as possible, thereby transforming object-level universal quantification
and implication into their meta-level counterparts. This leaves us with the
meta-level goal

∧
x . A =⇒ P x, that is, we have to show for an arbitrary but

fixed x that under the assumption A we may conclude P x. Now, by fix x,
we state that x is arbitrary but fixed. Then, we assume A, since we want to
show an implication. Together with our global assumption A −→ (∀ x . P x),
referenced via assms), we can prove ∀ x . P x by some standard rule (in this
case modus ponens; the abbreviation .. stands for try to solve the current goal
by a single application of some standard rule; see also Section 2.5). Again, by
some standard rule (this time the specialization rule for ∀), we can show the
desired conclusion P x . Now, the proof is complete and finished by qed. From
this point on, we may use the name example1 to refer to the lemma

example1 : A −→ (∀ x . P x) =⇒ ∀ x . A −→ P x

which is implicitly universally quantified over A and P at the meta-level. Let
us compare this proof to a proof of the same statement in apply-style.

lemma A −→ (∀ x . P x) =⇒ ∀ x . A −→ P x
apply (intro allI impI)
apply (erule impE)
apply (assumption)
apply (erule allE)

13

Chapter 2 Isabelle/HOL

apply (assumption)
done

In principle those two proofs are equivalent, however, we believe that the former
proof is much more readable. Hence, from now on, we ban apply from our
repertoire of proof commands and stick to Isar proofs. Until now, we have
been concerned with the Logic part of the above equation. So let us go for
Functional Programming.

2.2.2 Functional Programming

Most functional programming languages provide strict typing, recursive func-
tions and algebraic data types. This introduces a slight complication: We need
to be sure that all functions that we define are total, since otherwise we could
use a function definition like f x = f x + 1 to render our logic inconsistent
(just remove f x from both sides of the equation to obtain 0 = 1). Hence,
Isabelle is rather conservative (it has to) and only allows recursive functions
where termination has been shown. Gladly, such termination proofs can often
be done automatically by the system.

Many popular functions from functional programming are already part of Is-
abelle’s library. Additionally, pervasive algebraic data types like α list or
α option together with corresponding functions are available. Non-recursive
functions are introduced using definition, whereas fun is used for recursive
functions. Consider the following example:

definition sqr :: nat ⇒ nat where sqr x ≡ x ∗ x

fun sqrsum :: nat list ⇒ nat where
sqrsum [] = 0 |
sqrsum (x # xs) = sqr x + sqrsum xs

This defines a non-recursive function sqr that takes the square of its argument
and the recursive function sqrsum that takes a list of natural numbers and
computes the sum of the squares of the list elements. The definition of sqrsum
is only accepted since the system could automatically prove termination.

Isabelle already provides the functions listsum and map, so let’s prove that we

14

2.3 Common Data Types and Functions

could use a combination of those, instead of sqrsum.

lemma sqrsum xs = listsum (map sqr xs)
by (induct xs) (simp all add : sqr def)

The proof is amazingly short, since it can be handled automatically after telling
the system that it should use induction over xs (every algebraic data type
comes with an appropriate induction scheme) and unfold the definition of sqr
(by default a definition of a constant c is stored under the name c def).

2.3 Common Data Types and Functions

In this section, we give a short overview of types and (related) functions that
are ubiquitous in HOL. (We introduce types in the same order as they are
defined in Isabelle/HOL.)

2.3.1 Tuples

In Isabelle, n-tuples are encoded by (right-associative) nesting of pairs. Fur-
ther, there is the special case of the empty tuple, represented by the type unit
having the sole element (). The type of pairs where the first component is of
type α and the second component of type β is written α × β in Isabelle.

Reasoning about Tuples.
Pairs may be used, as if defined by the data type

datatype α × β = Pair α β

We say “as if,” since the internal definition is more involved. The ASCII version
of α × β is α ∗ β. As syntactic sugar, pairs may be constructed by (x , y) in-
stead of Pair x y . More about tuples, can be found in the theory Product Type of
Isabelle/HOL.

By far the most common functions on pairs are the component-selectors:

fst (x , y) = x
snd (x , y) = y

15

Chapter 2 Isabelle/HOL

2.3.2 Natural Numbers

For natural numbers we have the type nat. A natural number is either zero
(represented by 0) or the successor of another natural number n (represented
by Suc n).

Reasoning about Natural Numbers.
Natural numbers may be used, as if defined by the data type:

datatype nat = 0 | Suc nat

This entails the induction scheme

nat .induct : [[P 0 ;
∧

n. P n =⇒ P (Suc n)]] =⇒ P m

as well as the case distinction rule

nat .exhaust : [[n = 0 =⇒ P ;
∧

m. n = Suc m =⇒ P]] =⇒ P

for natural numbers. Note that for readability, we often write n+ 1 instead of Suc n.
Natural numbers are defined in the theory Nat of Isabelle/HOL.

2.3.3 Options

The data type α option encapsulates optional values of type α, that is, a value
having this type either contains a value x of type α (represented by Some x)
or it is empty (represented by the constructor None).

Reasoning about the Option Type.
The internal definition is

datatype α option = None | Some α

The option type is defined in the theory Option of Isabelle/HOL.

One function that is particularly convenient in combination with this data type
is the, which is defined by the equation

the (Some x) = x

16

2.3 Common Data Types and Functions

2.3.4 Lists

A list containing elements of type α is either empty (represented by []) or
consists of some element x—the “head” of the list—followed by a shorter list
xs—the “tail” of the list (represented by x # xs).

Reasoning about Lists.
Lists are represented by the data type

datatype α list = [] | op # α (α list)

Here op x indicates that x is an infix operator. The ASCII variants of [] and op # are
Nil and Cons, respectively. Again we have an induction scheme

list .induct : [[P [];
∧

y ys. P ys =⇒ P (y # ys)]] =⇒ P xs

and a case distinction rule

list .exhaust : [[xs = [] =⇒ P ;
∧

y ys. xs = y # ys =⇒ P]] =⇒ P

This and much more (that is, functions on lists and lemmas about those functions)
can be found in the theory List of Isabelle/HOL.

Lists are used heavily inside IsaFoR. Hence, there are several functions on lists
that pop-up regularly. Those are described in the following.

Number of Elements The number of elements contained in a list is computed
by the function length. For brevity, we write |xs| instead of length xs.

|[]| = 0
|x # xs| = (|xs|+ 1)

Concatenating Lists Concatenating two lists is done by the function append
(using the infix op @ as syntactic sugar):

[] @ ys = ys
(x # xs) @ ys = x # xs @ ys

Here, it is important to note that op # and op @ are both right-associative and
have the same priority. Thus, the list 1 # (2 # (3 # [])) may be written as
1 # 2 # 3 # [] and a construct like xs @ y # ys is the same as xs @ (y # ys).

17

Chapter 2 Isabelle/HOL

Getting an Element Getting the i-th element of a list is another common
task. This is done by the function nth having the infix syntax op !, such that
xs ! i denotes taking the i -th element of the list xs. For brevity, we use the
notation xs i in the following. The function nth is defined by the equation:

(x # xs)n = (case n of 0 ⇒ x | k + 1 ⇒ xsk)

Taking Elements Taking the first n elements of a list is the purpose of the
function take, defined by the equations

take n [] = []
take n (x # xs) = (case n of 0 ⇒ [] | m+ 1 ⇒ x # take m xs)

Dropping Elements The ‘symmetric’ operation to take is drop, which is de-
fined by

drop n [] = []
drop n (x # xs) = (case n of 0 ⇒ x # xs | m+ 1 ⇒ drop m xs)

and whose purpose is to remove the first n elements from a list.

Mapping a Function over a List Often, we want to apply the same function
to every element of a list, thereby producing a new list. This is done by map:

map f [] = []
map f (x # xs) = f x # map f xs

Converting Lists to Sets For formulating logical properties, it is mostly more
convenient to reason about finite sets (since the order of elements is irrelevant)
instead of lists. Therefore, the function set is provided, which takes a list as
input and returns a set containing its elements. The definition is:

set [] = ∅
set (x # xs) = {x} ∪ set xs

Since it is usually clear from the context, when a list is used as a set, we
installed a syntax translation, dropping this conversion function. This results,
for example, in x ∈ xs instead of x ∈ set xs.

18

2.4 Combining and Modifying Facts

2.4 Combining and Modifying Facts

Very often, a fact that is needed at a certain point in a proof, can be obtained
by combining several existing facts. Another time, the needed fact could be
obtained by a small modification of an existing fact. In this section, we shortly
explain some attributes that are used to achieve such tasks. Here, an attribute
is an “argument” that may be given to a theorem.

Discharging Assumptions Consider a situation where we want to prove a fact
B. Additionally, we have the facts

AimpB : A =⇒ B
A: A

Since one of our facts directly satisfies the assumption of the other fact, we
would like to obtain B in a neat way. This can be done using the attribute OF
as follows:

AimpB [OF A]

In general, OF allows to discharge assumptions from left to right. For conve-
nience, we may use underscores to omit positions. For example, the expression
lemma1 [OF lemma2] may be used to discharge the second assumption of the
lemma lemma1, using the lemma lemma2.

Replacing Equals by Equals In other cases we have some fact, that is almost
what we need, except that we want to apply some equations first. This can be
done using the attribute unfolded. Consider that we have

Suc: m = (n+ 1)
lem: P m

Then, we can directly obtain P (n+ 1) by lem[unfolded Suc].

Instantiation Remember that every lemma that has been proven in Isabelle,
is implicitly universally quantified (at the meta-level) over all free variables.
Sometimes it is convenient to explicitly instantiate such ‘universal’ lemmas.

19

Chapter 2 Isabelle/HOL

Consider that we have proven that some property P does hold for every natural
number n:

Plemma: P n

Hence, it should be possible to conclude P 0. This can easily be done by
Plemma[of 0] (where we assume that P is some defined constant and hence
not free in Plemma). Note that (like for OF) we may omit positions using
underscores.

2.5 Some Isar Idioms

In this section we introduce some idioms that are commonly used in Isar and
make life easier (and often proofs shorter).

Abbreviations Some proof methods are so common that abbreviations are
provided for them. For example, every logical constant usually comes with
some introduction and elimination rules. Then it is syntactically clear that
whenever we try to prove a statement introducing a constant we have to use
the appropriate introduction rule. Similarly, whenever we want to eliminate a
constant, we use the appropriate elimination rule. Further, the system auto-
matically distinguishes between introducing and eliminating, by just checking
whether there are any current facts. If there are, then the default behavior
is to eliminate the outermost constant of the first fact, otherwise, the default
behavior is to introduce the outermost constant of the goal. This is done, when-
ever we start a proof using proof (but may be suppressed by using proof -
instead), or use the method .. (two dots) to prove something. Consider for
example logical conjunction.

lemma A ∧ B
proof

Since we did not give a hyphen as argument to proof, the introduction rule
conjI is applied, resulting in the goals:

1 . A

2 . B

20

2.5 Some Isar Idioms

If, on the other hand, there are current facts, the corresponding elimination
rule is used. For example, in

lemma
assumes A ∧ B shows B

using assms proof

we have the current fact A ∧ B where the outermost constant is op ∧. Hence,
conjE is applied, resulting in the goal:

1 . [[A; B]] =⇒ B

Reasoning using Default Rules.
You may wonder, which rules exactly are considered by proof and .. as default
introduction and elimination rules. The answer is that default rules are declared as
such in the library. Additionally, IsaFoR introduces many more default rules for newly
introduced constants. The most important of them are described in ‘reasoning boxes,’
directly after their introduction.

Another common pattern is, when a goal is directly provable from the current
fact. In such a case, the short form . (a single dot), may be used. For example,

from TrueI have True .

Where TrueI is a lemma from Isabelle/HOL, stating that True is always a
valid fact.

Collecting Facts Often, we have to prove the assumptions of a rule one after
the other, before it is possible to apply it. It would be tedious to invent new
names for every intermediate fact. Hence, it is possible to collect a bunch of
facts and apply them simultaneously. The general scheme is:

have A1 〈proof omitted〉
moreover have A2 〈proof omitted〉

...

moreover have An 〈proof omitted〉

21

Chapter 2 Isabelle/HOL

ultimately have B by (rule R)

where R is a rule that yields B and whose assumptions are satisfied by A1 to
An (in this order).

Obtaining Witnesses Usually, when we eliminate an existential quantifier
from a term like ∃ x . P x, we want to get hold of a concrete witness satisfying
the property P. In Isar, this is done using obtain, for specifying the name(s)
of the witness(es) and where, for specifying the properties that they have to
satisfy. The simplest example would be:

have ∃ x . P x 〈proof omitted〉
then obtain y where P y ..

2.6 Chapter Notes

In this chapter, we gave a short introduction to interactive theorem proving,
which is part of what is called mechanized proof. MacKenzie [26] gives a nice
historical overview on mechanized proof and discusses some related philosoph-
ical questions.

Afterwards, we gave an overview of Isabelle’s meta-logic, which is described
by Paulson [31]. Since our discussion of Pure was only brief, we refer to the
thorough documentation provided by Wenzel [49, 50] as further reading. There
is also a must-see tutorial on Isabelle/HOL by Nipkow et al. [29].

Then, we shortly discussed how logic and functional programming is part of
HOL. By Isar, Isabelle provides a human readable style of proof. Isar was
introduced by Wenzel [48]. For a stepwise introduction to Isar we refer to
Nipkow [28]. Concerning functional programming, we have to make sure that
every newly introduced function is terminating. Gladly, most of the time a
user does not have to do termination proofs for newly introduced functions by
hand, thanks to the ingenious definitional function package by Krauss [25].

22

2.6 Chapter Notes

Finally, we listed some data types and functions that are used throughout our
formalizations; showed a neat way to combine and modify facts; and indicated
some structures that can be found in many Isar style proofs.

23

Chapter 3

Abstract Rewriting

An abstraction is one thing
that represents several real things equally well.

Edsger Wybe Dijkstra

Abstract rewriting is rewriting on abstract entities, whereby we mean that we
do not have any information on the kind of entities. Consequently, every fact
that we are able to prove for abstract rewriting, does also hold for any specific
structure of entities. Hence, we may freely use the results of this chapter
for term rewriting (from Chapter 4 on). In general, rewriting is the process of
applying rules from a given set to some entity that is being rewritten. This is of
course only possible if there is a rule for the specific entity under consideration.
Additionally, more than one rule may be applicable. This is usually modeled
using an abstract rewrite system (ARS).

Definition 3.1 (Abstract Rewrite Systems). An ARS A is a pair (A,→A),
consisting of a carrier A, together with a binary relation →A ∈ A×A.

Example 3.1. Consider the carrier A = {a, b, c} together with the binary rela-
tion → = {(a, a), (a, b), (a, c)} ⊆ A × A. We have three rules for a, but none
for the other two carrier elements. A single rewrite step from a to b (denoted
by a→ b) is possible, due to the rule (a, b).

3.1 Abstract Rewriting in Isabelle

Since we are in a typed setting (using HOL), we do omit a specific carrier in
our formalizations and just use the type

25

Chapter 3 Abstract Rewriting

types α ars = (α × α) set

of endorelations over type α to denote ARSs in IsaFoR. (In general, binary
relations may have different types for their domain and codomain, that is, a
binary relation has the type (α × β) set. To stress that we are only considering
binary relations for which the domain and codomain coincide, we use the term
endorelation.) If (a, b) ∈ A, we say that there is a rewrite step from a to b.
Many facts about binary relations are already provided in the theory Relation
of Isabelle’s library. For example: definitions for the (reflexive and) transitive
closure R+ (R∗) of a relation R, and the composition of two binary relations
R and S, given by

rel comp def : R ◦ S ≡ {(x , z) | ∃ y . (x , y) ∈ R ∧ (y , z) ∈ S}

When (a, b) ∈ A∗ (A+), we say that there is a (non-empty) rewrite sequence
from a to b (or simply that a rewrites to b).

Reasoning about Binary Relations.
Many facts about binary relations can be found in the theory Relation, which is part
of Isabelle/HOL. Just note that the ASCII versions of composition and the (reflexive
and) transitive closure are: O (the capital letter ‘O’) and ˆ+ (ˆ∗). Consult Relation,
for further details.

Definition 3.2 (Termination / Strong Normalization). It is sometimes conve-
nient to analyze the termination behavior of single elements. We say that an
element a is terminating (with respect to an ARS A), whenever there is no
infinite A-sequence starting at a:

SNA(a) ≡ @ S . S 0 = a ∧ (∀ i . (S i , S (i+ 1)) ∈ A)

An infinite sequence of elements of type α is modeled by a function S ::nat ⇒ α.
Further, by demanding that between every element and its successor there is
an A-step, the infinite sequence is guaranteed to be an infinite rewrite sequence
of A.

Now, an ARS A is terminating, if every carrier element is terminating:

SN(A) ≡ ∀ a. SNA(a)

26

3.1 Abstract Rewriting in Isabelle

Reasoning about Termination.
The ASCII version of the strong normalization predicate (for single elements) is SN
(SN elt). Note that strong normalization is connected to the Isabelle internal notion
of well-foundedness by the lemma

SN iff wf : SN(A) = wf (A−1)

where A−1 denotes the inverse of the relation A. The ASCII variant is ˆ−1.

The above two definitions for strong normalization are available in IsaFoR under the
name SN defs. There are also some introduction and elimination rules for strong
normalization. For SNA(a), the most important rules are

SN elt I : (
∧

S . [[S 0 = a; ∀ i . (S i , S (i+ 1)) ∈ A]] =⇒ False) =⇒ SNA(a)
SN elt E : [[SNA(a); @ S . S 0 = a ∧ (∀ i . (S i , S (i+ 1)) ∈ A) =⇒ P]] =⇒ P

and for SN(A) we have

SN I : (
∧

a. SNA(a)) =⇒ SN(A)
SN I ′: (

∧
S . ∀ i . (S i , S (i+ 1)) ∈ A =⇒ False) =⇒ SN(A)

SN E : [[SN(A); SNA(a) =⇒ P]] =⇒ P
SN E ′: [[SN(A); @ S . ∀ i . (S i , S (i+ 1)) ∈ A =⇒ P]] =⇒ P

Further, the principle of well-founded induction that is already present in Isabelle,
carries over to strong normalization:

SN induct : [[SN(A);
∧

a. (
∧

b. (a, b) ∈ A =⇒ P b) =⇒ P a]] =⇒ P a

When conceiving a rewrite sequence of an ARS as a computation sequence of
a program, where the involved elements denote the intermediate states of the
program, termination of the ARS is equivalent to termination of the program.
That is, we have an answer to the question: does every computation path lead
to a result eventually? There are other interesting questions concerning pro-
grams. One of them is: Is the order in which we evaluate expressions irrelevant,
that is, is it always possible to join two different computation paths? On the
abstract rewriting level, this second question is known as confluence (or the
Church-Rosser property). Like termination, confluence is undecidable in gen-
eral. However, there is a nice connection between termination and confluence:
Newman’s Lemma. To get further acquainted with Isabelle, in the next section,
we will give a proof of Newman’s Lemma as it is part of IsaFoR. Readers al-
ready familiar with Isabelle, may safely skip the next section, since confluence
of ARSs is not needed in our later formalizations.

27

Chapter 3 Abstract Rewriting

3.2 Newman’s Lemma

Our main goal, is to imitate the textbook proof of Newman’s Lemma as closely
as possible.

Definition 3.3 (Confluence / Church-Rosser). Before we can actually state the
lemma, we need to define (local) confluence (also known as the (Weak) Church-
Rosser Property ; explaining the following names). For single elements, this is
done as follows:

WCRA(a) ≡ ∀ b c. (a, b) ∈ A ∧ (a, c) ∈ A −→ (b, c) ∈ A↓
CRA(a) ≡ ∀ b c. (a, b) ∈ A∗ ∧ (a, c) ∈ A∗ −→ (b, c) ∈ A↓

where A↓ is the joinability relation of A, given by A↓ ≡ A∗ ◦ (A−1)∗. For an
ARS A we say that it is (locally) confluent, whenever every element is (locally)
confluent.

Reasoning about Confluence.
The corresponding ASCII constants for the (Weak) Church-Rosser Property and the
joinability relation are (WCR elt/WCR) CR elt/CR and join. Again, there are the
obvious introduction and elimination rules:

WCR elt I : (
∧

b c. [[(a, b) ∈ A; (a, c) ∈ A]] =⇒ (b, c) ∈ A↓) =⇒ WCRA(a)
WCR elt E :

[[WCRA(a); (b, c) ∈ A↓ =⇒ P ; (a, b) /∈ A =⇒ P ; (a, c) /∈ A =⇒ P]] =⇒ P
CR elt I : (

∧
b c. [[(a, b) ∈ A∗; (a, c) ∈ A∗]] =⇒ (b, c) ∈ A↓) =⇒ CRA(a)

CR elt E :
[[CRA(a); (b, c) ∈ A↓ =⇒ P ; (a, b) /∈ A∗ =⇒ P ; (a, c) /∈ A∗ =⇒ P]] =⇒ P

WCR I : (
∧

a. WCRA(a)) =⇒ WCR(A)
WCR E : [[WCR(A); WCRA(a) =⇒ P]] =⇒ P
CR I : (

∧
a. CRA(a)) =⇒ CR(A)

CR E : [[CR(A); CRA(a) =⇒ P]] =⇒ P

The only difference between local confluence and confluence, is that the former
merely demands that two single steps are joinable, whereas the latter demands
that every two rewrite sequences starting at the same element are joinable.

Lemma 3.1 (Newman’s Lemma). An ARS A is confluent, whenever it is ter-
minating and locally confluent. In Isabelle this is stated as follows:

[[SN(A); WCR(A)]] =⇒ CR(A)

28

3.2 Newman’s Lemma

In the remainder of this section, we give a proof of the above statement.

lemma Newman: assumes SN(A) and WCR(A) shows CR(A)
proof

We have to show that an arbitrary but fixed element x is confluent. We do this
using the first assumption and proceeding by well-founded induction.

fix x
from 〈SN(A)〉 show CRA(x)
proof induct

case (IH x) show CRA(x)

At this point, the induction hypothesis IH : (x , b) ∈ A =⇒ CRA(b) for arbitrary
b is at our disposal.

proof
fix y z

In order to show confluence for the single element x, we assume that there are
two rewrite sequences to the arbitrary but fixed elements y and z and then
have to show that those are joinable.

assume (x , y) ∈ A∗ and (x , z) ∈ A∗
from 〈(x , y) ∈ A∗〉 obtain m where (x , y) ∈ Am ..
from 〈(x , z) ∈ A∗〉 obtain n where (x , z) ∈ An ..

We obtain the lengths m and n of the two rewrite sequences from x to y and
from x to z. The remainder of the proof runs by nested case distinctions on m
and n. Since the cases where either of them is 0 are trivial, we omit them and
just present the interesting case, that is, m = m ′ + 1 and n = n ′ + 1. To get
the proof idea, Figure 3.1 may be helpful.

show (y , z) ∈ A↓
proof (cases n)

case 0 show ?thesis 〈proof omitted〉
next

case (Suc n ′)
from 〈(x , z) ∈ An〉[unfolded Suc] obtain t

where (x , t) ∈ A and (t , z) ∈ A∗ ..

29

Chapter 3 Abstract Rewriting

x s y

t u v

z w

WCR IH

IH

∗

∗

∗ ∗ ∗ ∗

∗ ∗

Figure 3.1: Proof sketch of Newman’s Lemma.

show ?thesis
proof (cases m)

case 0 show ?thesis 〈proof omitted〉
next

case (Suc m ′)
from 〈(x , y) ∈ Am〉[unfolded Suc] obtain s

where (x , s) ∈ A and (s, y) ∈ A∗ ..

First we complete the top left square of Figure 3.1, using the assumption that
A is locally confluent. In this way we obtain the element u.

from 〈WCR A〉 and 〈(x , s) ∈ A〉 and 〈(x , t) ∈ A〉
have (s, t) ∈ A↓ by auto

then obtain u where (s, u) ∈ A∗ and (t , u) ∈ A∗ ..

Then, using the induction hypothesis instantiated with (x , s) ∈ A (that is,
we discharge the first assumption of IH by OF . . .), we complete the top
right square. Obtaining the element v. (Recall that . stands for a proof by
assumption.)

from IH [OF 〈(x , s) ∈ A〉] have CRA(s) .
with 〈(s, u) ∈ A∗〉 and 〈(s, y) ∈ A∗〉 have (u, y) ∈ A↓ by auto
then obtain v where (u, v) ∈ A∗ and (y , v) ∈ A∗ ..

Finally, we complete the bottom square, using the induction hypothesis instan-
tiated with (x , t) ∈ A. (Note that the abbreviation ?thesis may always be used
to refer to the conclusion of the current subproof.)

30

3.3 Non-Strict Ending

from IH [OF 〈(x , t) ∈ A〉] have CRA(t) .
moreover from 〈(t , u) ∈ A∗〉 and 〈(u, v) ∈ A∗〉

have (t , v) ∈ A∗ by auto
ultimately have (z , v) ∈ A↓ using 〈(t , z) ∈ A∗〉 by auto
then obtain w where (z , w) ∈ A∗ and (v , w) ∈ A∗ ..
from 〈(y , v) ∈ A∗〉 and 〈(v , w) ∈ A∗〉 have (y , w) ∈ A∗ by auto
with 〈(z , w) ∈ A∗〉 show ?thesis by auto

qed
qed

qed
qed

qed

In the next section we will give a proof of a fact that is used several times in
IsaFoR.

3.3 Non-Strict Ending

When reasoning about termination, we are often concerned with infinite se-
quences (as we have already seen above, those are modeled by functions from
the natural numbers to the type of elements the sequence has). This is mostly
used in proofs by contradiction, where we show that the existence of an infinite
sequence would lead to a contradiction.

In the following, we give a particularly useful lemma, which is used several
times in IsaFoR.

Lemma 3.2. Consider two ARSs A and B, as well as the infinite A ∪ B-
sequence S. Let the first element of S be strongly normalizing with respect
to B, and A be compatible to B (that is, an A-step followed by a B-step,
can be replaced by a single B-step). Then, after a finite number of steps, the
remaining sequence consists solely of A-steps.

In usual applications of this lemma A is a non-strict relation, hence the name.

lemma non strict ending :
assumes seq : ∀ i . (S i , S (i+ 1)) ∈ A ∪ B

31

Chapter 3 Abstract Rewriting

and A ◦ B ⊆ B and SNB(S 0)
shows ∃ j . ∀ i≥j . (S i , S (i+ 1)) ∈ A − B

For the sake of a contradiction, we assume that the conclusion does not hold.

proof (rule ccontr)
assume ¬ (∃ j . ∀ i≥j . (S i , S (i+ 1)) ∈ A − B)

But then, by the Axiom of Choice, we get hold of a selection function π over
the indices, such that there is a B-step from position π i to position π (i+ 1)
and additionally π is monotone (that is, ∀ i . i ≤ π i).

with seq have ∀ j . ∃ i . i ≥ j ∧ (S i , S (i+ 1)) ∈ B by blast
from choice[OF this] obtain π

where B steps: ∀ i . π i ≥ i ∧ (S (π i), S ((π i) + 1)) ∈ B ..

The idea is now to use π, in order to pick those elements from S that are
connected by B+. To this end, we need an auxiliary function that actually
constructs indices for the new sequence from indices of the old one. This is the
purpose of

shift by f 0 = 0
shift by f (i+ 1) = ((f (shift by f i)) + 1)

With the help of this function, we define an infinite sequence ?S that pinpoints
those elements of the original sequence S which are connected by B+.

let ?S i = S (shift by π i)

Before we are actually able to show that the new sequence ?S is an infinite
sequence of B+-steps, we show the following:

have ∀ i . (S i , S ((π i) + 1)) ∈ B+

For this proof we need two more lemmas: One that shows that in an infinite
B-sequence there is a step from i to j in the reflexive and transitive closure
of B, whenever i ≤ j. And another one that shows that if a relation A is
compatible with a relation B, that is A ◦ B ⊆ B, then an arbitrary A ∪ B-
sequence, followed by a B-step, may be combined into a non-empty B sequence.
In Isabelle those two lemmas look as follows:

32

3.4 Chapter Notes

iseq imp steps:
[[∀ i . (S i , S (i+ 1)) ∈ A; i ≤ j]] =⇒ (S i , S j) ∈ A∗

comp rtrancl trancl :
[[A ◦ B ⊆ B; (x , y) ∈ (A ∪ B)∗ ◦ B]] =⇒ (x , y) ∈ B+

proof
fix i
from B steps have π i ≥ i

and B step: (S (π i), S ((π i) + 1)) ∈ B by auto
from seq and 〈π i ≥ i 〉

have (S i , S (π i)) ∈ (A ∪ B)∗ by (rule iseq imp steps)
with B step have (S i , S ((π i) + 1)) ∈ (A ∪ B)∗ ◦ B by auto
with 〈A ◦ B ⊆ B〉 show (S i , S ((π i) + 1)) ∈ B+

by (rule comp rtrancl trancl)
qed
hence ∀ i . (?S i , ?S (i+ 1)) ∈ B+ by simp

It remains to show that this contradicts the assumption SNB(S 0). Therefore,
we need a lemma, stating that the termination behavior of a single element
under B, carries forward to B+, that is:

SN elt imp SN elt trancl : SNA(x) =⇒ SNA+(x)

moreover from 〈SNB(S 0)〉 have SNB+(?S 0)
using SN elt imp SN elt trancl by simp

ultimately show False unfolding SN defs by best
qed

Now we know everything about termination of ARSs that we need in the up-
coming chapters. In the next chapter we will give structure to the elements of
our rewrite systems. That is, we are concerned with the rewriting of terms.

3.4 Chapter Notes

In this chapter, we started by introducing our Isabelle formalization of abstract
rewriting [36]. As an example of its usage, we gave a proof of Newman’s Lemma.
Note that this is by far not the first formalization of Newman’s Lemma. There

33

Chapter 3 Abstract Rewriting

are formalizations in ACL2 [33], Boyer-Moore [34], Coq [19], Isabelle [32], Otter
[3], and PVS [11], among others. Yet another formalization is part of the
Isabelle sources since 1995 (in the theory Library/Commutation). It tries to
exhaust automatic methods—giving incremental versions of the lemma that are
using more and more automation—resulting in an impressively short proof.

34

Chapter 4

Term Rewriting

Don’t ask for its meaning ask for its rules!

Vincent van Oostrom

Abstract rewriting is convenient for establishing properties and proving facts
that do not rely on the structure of elements being rewritten. However, it
is not that useful when we want to prove termination of a program. The
problem is to fix an adequate abstraction. If we do not abstract at all, writing
down the ARS corresponding to a program, is only possible when we already
know its termination behavior. It is also possible to loose termination by the
abstraction.

Example 4.1. Consider the following Haskell implementation of the Ackermann
function:

ack 0 y = y + 1 (1)
ack (x + 1) 0 = ack x 1 (2)

ack (x + 1) (y + 1) = ack x (ack (x + 1) y) (3)

Now, let us represent this program as an ARS. One way would be to abstract
from concrete integers and just consider function calls. This would result in the
graph depicted in Figure 4.1. But, as is evident from the cycles in the graph,
this ARS is not terminating, even though the original program is.

Another possibility would be to identify a function call with its result. Then
the carrier would consist of all the integers (restricted to a fixed number of bits)
that are results of some call to ack, but there would be no edges (that is, we
are considering an empty binary relation). This abstraction trivially establishes

35

Chapter 4 Term Rewriting

(1)

(2) (3)

Figure 4.1: The call-graph of the Ackermann function.

termination of the Ackermann program. However, we had to exploit the fact
that every call to ack yields a result in the first place. Hence, this abstraction
is also not useful for termination analysis, since termination is already required
to build it.

What we would really like to have is some structure on elements that can be
used to represent facts like changes in function arguments, the nesting structure
of functions, mutual dependencies, etc. There are several possibilities: strings,
first-order terms, lambda terms, graphs, and what is more. For our purposes we
choose first-order terms, which give a good compromise between expressiveness
and simplicity.

4.1 First-Order Terms

In the literature terms are usually built over some signature of function sym-
bols having a certain arity, together with a (usually countable infinite) set of
variables. Then a term is either a variable, or a function application with
a number of arguments, corresponding to the arity of the involved function
symbol. For example, the left-hand sides of the Ackermann program from
Example 4.1, could be written as ack(0, y), ack(s(x), 0) and ack(s(x), s(y)), re-
spectively (where s denotes the successor function).

As already for the carrier in the abstract rewriting setting, we choose to repre-
sent variables and function symbols by types instead of sets (which is somehow
equivalent anyway). In IsaFoR we use the following data type:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

36

4.1 First-Order Terms

This denotes terms built over function symbols of type α and variables of
type β. Note that there is no well-formedness restriction to function applica-
tions in the sense that some arity has to be respected. This also implies that
the name of a function symbol alone, is not enough to identify it uniquely,
since the same name could be used with different arities. Thus, we usually
take pairs (f , n) of function symbols and arities, to gain uniqueness. Using
this data type, the above terms would be represented by

Fun “ack” [Fun “0” [], Var “y”]
Fun “ack” [Fun “s” [Var “x”], Fun “0” []]
Fun “ack” [Fun “s” [Var “x”], Fun “s” [Var “y”]]

where we use strings to represent function symbols and variables. In examples,
we use the more compact notation from above (for example, s(0) instead of
Fun “s” [Fun “0” []]), where function symbols are written sans serif, to distin-
guish them from variables (which are written in italics).

Reasoning about Terms.
As for every data type, Isabelle provides case distinction and induction for terms. Case
distinction is:

term.exhaust : [[
∧

x . t = Var x =⇒ P ;
∧

f ts. t = Fun f ts =⇒ P]] =⇒ P

The automatically generated induction scheme for terms, however, is a bit bulky, due
to the nested recursive structure of terms and lists in the Fun-case (we deliberately
omit its name, since it should not be used):

[[
∧

x . P (Var x);
∧

f ts. Q ts =⇒ P (Fun f ts); Q [];∧
t ts. [[P t ; Q ts]] =⇒ Q (t # ts)]]

=⇒ P t ∧ Q ts

For a more textbook-like induction over terms we introduce a new induction scheme
(which is also installed as the default induction scheme for terms):

term induct :
[[
∧

x . P (Var x);
∧

f ss. (
∧

s. s ∈ ss =⇒ P s) =⇒ P (Fun f ss)]] =⇒ P t

Definition 4.1 (Root Symbols). For a function application t = Fun f ts, we
call f the root symbol (or simply root) of the term t. In IsaFoR, we have

root (Var x) = None
root (Fun f ts) = Some f

37

Chapter 4 Term Rewriting

where the fact that the root is only defined for function applications, is ex-
pressed by using HOL’s option type. (Note that in the literature, the root of a
variable is sometimes defined to be the variable itself. In a typed setting, such a
definition is not possible.) For readability, the term the (root t) is abbreviated
to root(t), in the remainder.

Definition 4.2 (Variables occuring in a Term). The set of variables occurring
in a term t is defined as follows:

Var(Var x) = {x}
Var(Fun f ts) = (

⋃
t∈ts Var(t))

In addition, V denotes the set of all Var terms, that is, a term t is a variable,
if and only if it is a member of V.

t ∈ V ≡ ∃ x . t = Var x
t /∈ V ≡ ∃ f ts. t = Fun f ts

Reasoning about Variables.
The ASCII constant vars term is used for the set of all variables occurring in a term.
Further, there is the function is var, to check whether a term is a variable. Then,
membership in V is realized by is var t = t ∈ V.

Definition 4.3 (Function Symbols occuring in a Term). The set of function
symbols (paired with their respective arities) occurring in a term t is given by
the recursive equations:

Fun(Var x) = ∅
Fun(Fun f ts) = {(f , |ts|)} ∪ (

⋃
t∈ts Fun(t))

Reasoning about Function Symbols.
Internally, the constant funas term is used to collect all the function symbol arity
pairs occurring in a term. The ‘a’ in ‘funas’ indicates that also the arity is considered.
This means that in IsaFoR, two function symbols having the same name, but different
arities, are considered to be different (as for example also in Prolog).

4.1.1 Auxiliary Functions on Terms

In this section, we give a short list of functions that are sometimes useful to
write down facts about terms more succinctly. The arguments of a term are

38

4.2 Term Rewrite Systems

defined by the equations:

args (Var x) = []
args (Fun f ts) = ts

Moreover, the number of arguments is defined by:

num args t = |args t |

4.2 Term Rewrite Systems

To describe the semantics of a program we use term rewrite systems (TRSs).

Definition 4.4 (Term Rewrite Systems). A TRS R is a set of (rewrite) rules,
where each rule is a pair of terms (l , r), having the left-hand side l and the
right-hand side r.

To facilitate the reading from left to right, we sometimes write l → r instead
of (l, r). In IsaFoR, we have the following types for rules and TRSs:

types
(α, β) rule = (α, β) term × (α, β) term
(α, β) trs = (α, β) rule set

Intuitively, every rule corresponds to one case of a function definition.

Definition 4.5 (Well-Formed TRSs). A TRSR is said to be well-formed, when-
ever all left-hand sides are non-variable terms and every variable that occurs
in a right-hand side also occurs in the corresponding left-hand side.

WF(R) ≡ ∀ (l , r)∈R. l /∈ V ∧ Var(r) ⊆ Var(l)

Reasoning about Well-Formed TRSs.
The ASCII version of WF(R) is wf trs R. Its original (and of course equivalent)
definition without syntax translations is the following:

wf trs R = (∀ l r . (l , r) ∈ R −→ (∃ f ts. l = Fun f ts) ∧ vars term r ⊆ vars term l)

Definition 4.6 (Signatures). A signature is a set of function symbol arity pairs.
Here, the arity of a function symbol determines, to how many arguments it is

39

Chapter 4 Term Rewriting

applied. Often, we are interested in the signature of symbols actually occurring
in a TRS R. This is defined as follows:

F(R) ≡
⋃

(l , r)∈R Fun(l) ∪ Fun(r)

Reasoning about Signatures.
The signature of a TRS R is computed by the functions funas rule and funas term as
follows:

funas rule r ≡ funas term (fst r) ∪ funas term (snd r)

funas trs R ≡
⋃

r∈R. funas rule r

Here, fst and snd are predefined selector-functions for the first and the second com-
ponent of a pair, respectively. All these definitions can be unfolded using the fact
funas defs.

Definition 4.7 (Defined Symbols and Constructors). The root symbols of the
left-hand sides of a TRS R, determine which functions are defined, hence,
those are called the defined symbols of R. The set of defined symbols of a
given TRS R is given by

(f, n) ∈ DR ≡ ∃ l . (∃ r . (l , r) ∈ R) ∧ root l = Some f ∧ num args l = n

Function symbols that are not defined are called constructor symbols (or sim-
ply constructors). Whereas defined symbols represent the functions that are
defined by a TRS, constructors represent data that may be manipulated by
those functions.

Reasoning about Defined Symbols.
Internally, the basis is the function defined that checks, whether a given symbol occurs
as a root of some left-hand side in a given TRS R:

defined R (f , n) ≡ ∃ l r . (l , r) ∈ R ∧ root l = Some f ∧ num args l = n

Then the set of defined symbols is the collection:

defs R ≡ {(f , n). defined R (f , n)}

Example 4.2. The definition of the Ackermann function in Example 4.1, can

40

4.3 Contexts

be encoded by the TRS

ack(0, y)→ s(y)
ack(s(x), 0)→ ack(x, s(0))

ack(s(x), s(x))→ ack(x, ack(s(x), y))

where we use a unary representation of natural numbers, constructed over zero
(0), and the successor function (s). (In the following we refer to thus built
numbers as Peano numbers.) The only defined symbol is ack.

As in function definitions of programming languages, the intention is that such
rules may be applied in arbitrary contexts and that parameters (that is, vari-
ables in left-hand sides of rules) may be instantiated by arbitrary inputs. Hence,
before we can formally state the semantics of a TRS, we need to define contexts
and substitutions.

4.3 Contexts

Closely related to terms are contexts. A context is like a term, except that
it contains a hole that acts as a placeholder for arbitrary terms that may be
plugged in later. The corresponding Isabelle data type is:

datatype (α, β) ctxt =
Hole |
More α ((α, β) term list) ((α, β) ctxt) ((α, β) term list)

For convenience the empty context (Hole) may also be denoted by �. The More
constructor is almost the same as Fun for terms, except that the argument list
is split into three parts: the arguments to the left of the one containing the
hole, the argument containing the hole, and the arguments to the right of the
one containing the hole.

Definition 4.8 (Contexts around Terms). Plugging a term inside a context is
defined by

�[t] = t
(More f ss1 C ss2)[t] = Fun f (ss1 @ C [t] # ss2)

41

Chapter 4 Term Rewriting

For an empty context, the result is just the term t, whereas for a non-empty
context, we recursively plug the term t into the subcontext C and put the
result in between the left and the right argument lists. Finally, we apply the
function symbol f to the resulting list of terms.

In examples, we again use the more compact notation and write, for example,
ack(�, 0) instead of More “ack” [] � [Fun “0” []].

Definition 4.9 (Composition of Contexts). In addition, contexts can be com-
posed with each other by replacing the hole in the first context with the second
context as follows:

� ◦D = D
(More f ss C ts) ◦D = More f ss (C ◦D) ts

Reasoning about Contexts.
As for terms, we do have case distinction and induction for contexts.

ctxt .exhaust : [[C = � =⇒ P ;
∧

f ss D ts. C = More f ss D ts =⇒ P]] =⇒ P
ctxt .induct : [[P �;

∧
f ss D ts. P D =⇒ P (More f ss D ts)]] =⇒ P C

This time, the automatically generated induction rule is exactly what we want. How-
ever, for case distinction, it is sometimes convenient to go ‘inside out.’

ctxt exhaust rev :
[[C = � =⇒ P ;

∧
D f ss ts. C = D ◦ (More f ss � ts) =⇒ P]] =⇒ P

Further IsaFoR instantiates the type class monoid mult with contexts, that is, it has
been shown that contexts together with context composition and the unit element �,
build a multiplicative monoid. Hence, all constants and lemmas that are available for
monoid mult inside Isabelle, can directly be used on contexts (for example, the n-fold
composition of contexts).

4.4 Subterms

Having contexts, we can define the (proper) subterm relation (B) D.

Definition 4.10 (Subterm Relation). We say that t is a (proper) subterm of
s, whenever there is a (non-empty) context C such that s = C [t]. That is,

42

4.5 Substitutions

s D t ≡ ∃C . s = C [t]
s B t ≡ ∃C . C 6= � ∧ s = C [t]

To facilitate a reading from left to write, we sometimes refer to D, as the
superterm relation (since, we think that it is more natural to say that s is a
superterm of t than that t is a subterm of s, when writing s D t).

Reasoning about Subterms.
Using subterms, we can introduce an alternative induction scheme for terms, that is,
induction over the proper subterms of a term:

subterm induct : (
∧

t . ∀ sCt . P s =⇒ P t) =⇒ P t

4.5 Substitutions

Substitutions are needed to supply rules with concrete values to work on. In
that sense, a substitution is just a function mapping variables to terms. In
IsaFoR, we have

datatype (α, β) subst = Subst (β ⇒ (α, β) term)

For technical reasons we have to use a data type instead of a plain type ab-
breviation (otherwise it would not be possible to instantiate type classes by
(α, β) subst).

In examples, we represent substitutions by finite sets of bindings. Then,
{x/s(y), z/u} is a substitution that replaces every x by s(y), every z by u,
and leaving all other variables unmodified.

Definition 4.11 (Substitutions on Terms). Applying a substitution to a term
is defined by

(Var x)σ = get subst σ x
(Fun f ts)σ = Fun f (map (λt . tσ) ts)

where get subst extracts the actual variable mapping from a substitution, that
is, get subst (Subst s) = s.

Definition 4.12 (Composition of Substitutions). Also substitutions can be
composed with each other. This is defined as follows:

43

Chapter 4 Term Rewriting

σ ◦ τ = Subst (λx . (get subst σ x)τ)

Definition 4.13 (Substitutions on Contexts). Having substitutions on terms
We can also apply a substitution to a context.

�σ = �
(More f ss D ts)σ = More f (map (λt . tσ) ss) Dσ (map (λt . tσ) ts)

Reasoning about Substitutions.
As for contexts, IsaFoR contains an instantiation of substitutions to multiplicative
monoids. This time, we have the neutral element

subst empty def : ι ≡ Subst Var

(recall that the constructor Var, is nothing more than a function, taking some variable
and building a term consisting solely of this variable out of it) and use the composition
of substitutions as multiplication.

Another special substitution that is sometimes convenient, is one containing a singleton
binding.

subst def : {x/t} = Subst (λy . if x = y then t else Var y)

Using substitutions, we can instantiate rules by specific values. For exam-
ple, to compute the result of the function call ack(0, 0), we have to apply the
substitution {y/0} to the first rule of the Ackermann TRS.

In the next section, we define the formal semantics of TRSs.

4.6 Rewrite Relation

As mentioned above, the rules of a TRS can be seen as function definitions.
To give semantics to a TRS, we would like to be able to compute the results of
calling such functions. This is expressed by the rewrite relation →R, induced
by a TRS R.

Definition 4.14 (Rewrite Relation). The rewrite relation is defined by closing
the rules of a TRS under contexts and substitutions. Or equivalently, there is
a rewrite step from s to t, denoted by s →R t, whenever there exists a rule (l ,
r) ∈ R, a context C, and a substitution σ, such that s = C [lσ] and t = C [rσ].

44

4.6 Rewrite Relation

We write s →∗R t (s →+
R t), if there is a (non-empty) sequence of rewrite steps

from s to t.

Hence, the semantics of a TRS R is given by the ARS represented by the
relation →R. Therefore, termination of a TRS R is defined as termination of
the corresponding rewrite relation. For brevity, we write SN(R), instead of
SN(→R).

Definition 4.15 (Non-Root / Root Rewrite Steps). For case distinctions it is
often useful to differentiate between root (rewrite) steps, given by
ε→R = {(s, t) | ∃ l r σ. (l , r) ∈ R ∧ s = lσ ∧ t = rσ}

and non-root (rewrite) steps, given by
>ε→R = {(s, t) | ∃ l r C σ. (l , r) ∈ R ∧ C 6= � ∧ s = C [lσ] ∧ t = C [rσ]}

Note that→R ≡
ε→R ∪

>ε→R, since we just make sure that the involved context
of a rewrite step is empty (for ε→R) or non-empty (for >ε→R). This is reflected
in IsaFoR by the lemma

rstep iff rrstep or nrrstep: →R = ε→R ∪
>ε→R

Reasoning about the Rewrite Relation.
Internally, there are three (equivalent) characterizations of the rewrite relation. The
original one is based on positions. Further, there is a characterization using two
inductively defined sets: the closure under substitutions and the closure under contexts
of a binary relation over terms. Finally, we have an inductively defined set rstep R,
given by the following rules:

rstep.id : (s, t) ∈ R =⇒ s →R t
rstep.subst : s →R t =⇒ sσ →R tσ
rstep.ctxt : s →R t =⇒ C [s] →R C [t]

With hindsight, it turned out that the last characterization is most convenient for
what we are presenting in the remainder. Hence, we do not give the details about the
other two characterizations here. However, we believe, that positions are crucial as
soon as we start to incorporate specific rewrite strategies.

Additionally to the above introduction rules, there is the following (combining all
premises):

rstepI : [[(l , r) ∈ R; s = C [lσ]; t = C [rσ]]] =⇒ s →R t

Then, we have the elimination rule:

45

Chapter 4 Term Rewriting

rstepE : [[s →R t ;
∧

C σ l r . [[(l , r) ∈ R; s = C [lσ]; t = C [rσ]]] =⇒ P]] =⇒ P

Further, there are three case distinction rules. The first rule uses the restrictions of
the rewrite relation to root steps and non-root steps.

rstep cases: [[s →R t ; s ε→R t =⇒ P ; s >ε→R t =⇒ P]] =⇒ P

The second rule is similar, but working directly on contexts:

rstep cases ′:
[[s →R t ;

∧
l r σ. [[(l , r) ∈ R; lσ = s; rσ = t]] =⇒ P ;∧

f ss1 u ss2 v .

[[s = Fun f (ss1 @ u # ss2); t = Fun f (ss1 @ v # ss2); u →R v]] =⇒ P]]

=⇒ P

The third rule is a refinement of the second one that does only work for well-formed
TRSs:

rstep cases Fun ′:
[[WF(R); Fun f ss →R t ;∧

ls r σ. [[(Fun f ls, r) ∈ R; map (λt . tσ) ls = ss; rσ = t]] =⇒ P ;∧
i u. [[i < |ss|; t = Fun f (take i ss @ u # drop (i+ 1) ss); ssi →R u]] =⇒ P]]

=⇒ P

The reason is that for well-formed TRSs, rewrite steps can only start from non-variable
terms (since all left-hand sides are guaranteed to be non-variable terms), thus having
the shape Fun f ss for some function symbol f and some list of terms ss. There are two
possibilities for the exact location of the rewrite step. Either it takes place at the root
(and hence there is some rule (Fun f ls, r) and a substitution σ, such that applying σ
to all elements of ls results in ss and applying it to r, results in t. Or the rewrite step
takes place below the root and hence only modifies one of the arguments in ss.

Finally, we have the induction rule:

rstep induct : [[s →R t ;
∧

C σ l r . (l , r) ∈ R =⇒ P C [lσ] C [rσ]]] =⇒ P s t

Note that a TRS that is not well-formed is always nonterminating.

Lemma 4.1 (Well-Formedness is Necessary for Termination). Let R be a
TRS that is not well-formed. Then R is not terminating.

46

4.6 Rewrite Relation

This is easy to prove:

lemma not wf trs imp not SN rstep:
assumes ¬ WF(R) shows ¬ SN(R)

proof −

If a TRS is not well-formed, then there is at least one rule where either the
left-hand side is a variable or there is a variable in the right-hand side that
does not occur in the left-hand side.

from assms obtain l r where (l , r) ∈ R
and bad rule: l ∈ V ∨ (∃ x . x ∈ Var(r)−Var(l))

unfolding wf trs def ′ by auto
from bad rule show ?thesis

We proceed by a case distinction, showing that in both cases, we can construct
an infinite R-sequence.

proof

If the left-hand side is a variable x, an infinite sequence is obtained by iteratively
stacking the substitution {x/r} onto x.

assume l ∈ V
then obtain x where l : l = Var x by (cases l) simp all
let ?S = λi . (Var x)({x/r}i)
have ∀ i . (?S i) →R (?S (i+ 1)) 〈proof omitted〉
thus ?thesis by best

next

If there is a variable in the right-hand side that is not contained in the left-hand
side, then we obtain an infinite R-sequence by iteratively stacking the context
C{x/l} onto the left-hand side.

assume ∃ x . x ∈ Var(r)−Var(l)
then obtain x where x ∈ Var(r)−Var(l) by auto
hence r D Var x by (induct r) auto

Here, we use the fact that whenever t is a subterm of s, then there is some
context C, such that, s = C [t]:

47

Chapter 4 Term Rewriting

supteqp ctxt E : [[s D t ;
∧

C . s = C [t] =⇒ thesis]] =⇒ thesis

then obtain C where r = C [Var x] by (rule supteqp ctxt E)
let ?S = λi . ((C{x/l})i)[l]
have ∀ i . (?S i) →R (?S (i+ 1)) 〈proof omitted〉
thus ?thesis by best

qed
qed

This shows that for termination analysis we may concentrate on well-formed
TRSs. However, in the remainder we will explicitly state whenever we rely on
well-formedness.

4.7 Chapter Notes

In this chapter, we have indicated why it is useful to have term structures for
termination proofs. Then, we presented the basic definitions for term rewriting
and several facts that are provided by IsaFoR to reason about terms and term
rewriting.

A rather accessible introduction to term rewriting is given by Baader and
Nipkow [2]. A more technical, but also more complete treatise is Terese [41].

48

Chapter 5

Dependency Pair Framework

Divide and conquer.

Design Principle

Every theory is a self-fulfilling prophecy that orders
experience into the framework it provides.

Ruth Hubbard

Now that we have term rewriting as a simple yet powerful model of computa-
tion, we are interested in proving termination of TRSs automatically. To this
end, an abundance of methods has been developed. First, reduction orders,
that is, well-founded orders that embed the rules of a given TRS and thereby
prove termination. Examples are: recursive path orders, the Knuth-Bendix
order, and monotone algebras. Then, there are transformations on TRSs (like
semantic labeling) that in many cases allow for ‘simpler’ termination proofs.
And finally, there is the dependency pair framework that facilitates modular
termination proofs using a combination of techniques. In this chapter, we con-
centrate on how to use the DP framework for proving termination of TRSs.

Clearly, a program is terminating if every sequence of consecutive function
calls is finite. The same idea is underlying the DP framework, where for TRSs
a ‘function call’ is just a subterm of some right-hand side, having a defined
symbol as root (since only at such subterms, rewriting can potentially go on).

Example 5.1. Consider the following TRS, encoding addition on Peano num-

49

Chapter 5 Dependency Pair Framework

bers:

add(0, y)→ y

add(s(x), y)→ s(add(x, y))

The only defined symbol is add. Observing the right-hand sides reveals that
there is one subterm having add as root, namely, add(x, y). Now, consider the
following rewrite sequence:

add(add(0, s(0)), 0)→ add(s(0), 0)→ s(add(0, 0))→ s(0)

On a closer look, it can be seen that single steps are actually taking care of two
things: executing a function (as in the last two steps) and evaluating arguments
of a surrounding function (as in the first step; of course, evaluation of arguments
also involves the execution of functions, but not of the surrounding one).

From a functional programming point of view, it is enough to show that ev-
ery function inside a program is terminating (on arbitrary inputs) in order to
conclude termination of the whole program. Furthermore, for proving termi-
nation of a single function on arbitrary inputs, it suffices to show its termi-
nation under the assumption that all of its arguments are terminating (since
otherwise, the nonterminating argument would already give smaller evidence
of nontermination of the whole program). This facilitates proofs by minimal
counterexamples.

The same is true for term rewriting. Hence, in the next section, we concentrate
on minimal counterexamples against termination.

5.1 Minimal Counterexamples

In term rewriting, a function call on some given input is represented by a
term t. Additionally, the assumption that all arguments of the function are
terminating, translates to the assumption that all proper subterms of t are
terminating. For a given TRS R the set of all such minimally nonterminating
terms is defined by

Tinf def : T ∞R ≡ {t | ¬ SNR(t) ∧ (∀ sCt . SNR(s))}

50

5.1 Minimal Counterexamples

Note that for every nonterminating term t there is some subterm s of t, such
that s is in T ∞R .

Lemma 5.1. Let t be nonterminating with respect to R. Then, there is a
subterm s of t, such that s is minimally nonterminating with respect to R.

lemma not SN imp subt Tinf :
assumes ¬ SNR(t) shows ∃ sEt . s ∈ T ∞R

The proof uses induction over the subterms of t.

using assms proof (induct rule: subterm induct)

From the induction hypothesis we know that t is not terminating and that every
nonterminating proper subterm of t has itself a subterm that is in T ∞R . We
proceed by a case distinction. Either all proper subterms of t are terminating
(which means that t itself is minimally nonterminating), or there is a proper
subterm of t that is nonterminating (in which case we can apply the induction
hypothesis to finish the proof).

case (subterm t) show ?case
proof (cases ∀ sCt . SNR(s))

case True with subterm show ?thesis by (auto simp: Tinf def)
next

case False
then obtain s where t B s and ¬ SNR(s) by best
with subterm obtain u where u E s and u ∈ T ∞R by auto

There are several transitivity rules for B and D. One of them is

suptp supteqp trans: [[s B t ; t D u]] =⇒ s B u

from 〈t B s〉 and 〈s D u〉 have t B u by (rule suptp supteqp trans)
with 〈u ∈ T ∞R 〉 show ?thesis by best

qed
qed

Having this, we can characterize termination of a TRS R by the emptiness of
T ∞R , that is, R is nonterminating, if and only if, there is a term t ∈ T ∞R . (Note
that ‘=’ is also used for biimplication in HOL.)

51

Chapter 5 Dependency Pair Framework

Lemma 5.2. (T ∞R = ∅) = SN(R)

Using Lemma 5.1, the proof is straight-forward.

Thus, we know that for every nonterminating TRSR there is a witness t ∈ T ∞R .
By definition of T ∞R , all proper subterms of t are terminating. Further, we
obtain an infinite rewrite sequence S, starting with t.

from 〈t ∈ T ∞R 〉 have ∀ sCt . SNR(s) and ¬ SNR(t) by (auto simp: Tinf def)
then obtain S where S 0 = t and seq : ∀ i . (S i) →R (S (i+ 1)) by best

Now, to distinguish between executing a function and evaluating its arguments,
we use the two restrictions of the rewrite relation →R from Definition 4.15.
Having this, together with ∀ sCt . SNR(s), implies that after a finite number
of non-root steps, there has to follow a root step using some rule of R, that is:

have ∃ i . (S 0) >ε→∗R (S i) ∧ (S i) ε→R (S (i+ 1))
proof −

from 〈t ∈ T ∞R 〉 have SN>ε→R
(S 0)

by (simp add : Tinf imp SN elt nrrstep 〈S 0 = t 〉)
with seq and union iseq SN elt imp first step[of S ε→R

>ε→R]
obtain j where first step: (S j) ε→R (S (j + 1))

and nrsteps: ∀ i<j . (S i) >ε→R (S (i+ 1))
by (auto simp: rstep iff rrstep or nrrstep)

from nrsteps have (S 0) >ε→∗R (S j) by (induct j) auto
with first step show ?thesis by auto

qed
then obtain j where nrseq : (S 0) >ε→∗R (S j)

and rrstep: (S j) ε→R (S (j + 1)) by auto
obtain l r σ where (l , r) ∈ R and lσ = S j and rσ = S (j + 1) by auto

We refer to Appendix A for the proofs of the lemmas Tinf imp SN elt nrrstep
and union iseq SN elt imp first step.

Clearly, rσ is not terminating, since it is part of the infinite sequence S. Ad-
ditionally, every term that is nonterminating has some subterm which is min-
imally nonterminating, due to Lemma 5.1. Thus, there is a corresponding
subterm t ′ of rσ.

have ¬ SNR(rσ) 〈proof omitted〉

52

5.1 Minimal Counterexamples

then obtain t ′ where rσ D t ′ and t ′ ∈ T ∞R
using not SN imp subt Tinf by auto

At this point we analyze t further. Remember that for TRSs which are not well-
formed, nontermination is immediate. Hence, we restrict our investigations to
well-formed TRSs. But then, only non-variable terms can be members of T ∞R ,
since variables are normal forms.

have ∃ f ts. t = Fun f ts 〈proof omitted〉
then obtain f ts where t : t = Fun f ts (is t = ?t) by auto

Hence, the rewrite sequence from S 0 to S j starts with the non-variable term
Fun f ts. Since non-root steps obviously preserve the root, this implies that S j
is a function application of f to some argument list ls ′.

from nrseq have ?t >ε→∗R (S j) by (simp add : t 〈S 0 = t 〉)
moreover from nrrsteps preserve root [OF this] obtain ls ′

where S j = Fun f ls ′ by auto

Combining the above with the fact that lσ = S j, results in a non-root rewrite
sequence from Fun f ts to lσ.

ultimately
have lσ = Fun f ls ′ and ?t >ε→∗R (Fun f ls ′) by (auto simp: 〈lσ = S j 〉)

hence ?t >ε→∗R lσ by simp

SinceR is well-formed, we know that l is a function application of some function
symbol g to some argument list ls.

from wf trs imp lhs Fun[OF 〈wf trs R〉 〈(l , r) ∈ R〉] obtain g ls
where l = Fun g ls by best

Clearly, instantiating any argument of l with σ, results in the corresponding
argument of lσ.

with 〈lσ = Fun f ls ′〉 have ∀ i<|ls ′|. ls ′i = (ls i)σ by auto

By the fact that all previous steps are below the root, we know that every
argument of ?t, rewrites to the corresponding argument of the instantiated
left-hand side l.

53

Chapter 5 Dependency Pair Framework

have ∀ i<|ts|. ts i →∗R (ls i)σ 〈proof omitted〉

Obviously, those steps do not change the number of arguments (since all of them
take place below the root) and thus, we may use |ts| and |ls ′| interchangeably.

from 〈?t >ε→∗R lσ〉 have |ts| = num args lσ
by (induct) (auto simp: nrrstep equiv num args)

with 〈lσ = Fun f ls ′〉 and 〈∀ i<|ls ′|. ls ′i = ls iσ〉

have ∀ i<|ts|. ls iσ = ls ′i by simp

Now, since all proper subterms of t are terminating and rewriting preserves
termination, we know that all arguments of lσ are terminating.

moreover with 〈∀ sCt . SNR(s)〉 have ∀ i<|ts|. SNR(ts i) by (auto simp: t)
ultimately have ∀ i<|ts|. SNR(ls iσ)

using 〈∀ i<|ts|. ts i →∗R ls iσ〉

and steps preserve SN elt [of →R] by blast
with 〈∀ i<|ts|. ls iσ = ls ′i〉 and 〈|ts| = num args lσ〉

and 〈lσ = Fun f ls ′〉 and 〈∀ i<|ts|. SNR(ls iσ)〉
have ∀ i<num args (Fun f ls ′). SNR(ls ′i) by auto

This implies that all proper subterms of lσ are terminating.

hence ∀ sCFun f ls ′. SNR(s) using SN args imp SN subt [of f ls ′ R] by blast
hence ∀ sClσ. SNR(s) by (simp add : 〈lσ = Fun f ls ′〉)

Since lσ is an element of the sequence S, it is clearly not terminating. To-
gether with the fact that ∀ sClσ. SNR(s), this implies that lσ is minimally
nonterminating.

have lσ ∈ T ∞R 〈proof omitted〉

moreover from 〈(l , r) ∈ R〉 have lσ ε→R rσ unfolding rrstep def ′ by best

Next, we show that there is a non-variable subterm u of r, such that its instanti-
ation with σ is itself minimally nonterminating. Additionally, we show that uσ
cannot be a proper subterm of the instantiated left-hand side lσ (this is done,
in order to obtain a stronger definition of dependency pairs; cf. Definition 5.1).

moreover have ∃ u. r D u ∧ u /∈ V ∧ rσ D uσ ∧ uσ ∈ T ∞R ∧ lσ 7 uσ

54

5.1 Minimal Counterexamples

proof −

We start by noting that σ-instances of variables in the right-hand side r, are
terminating (otherwise, we would have a contradiction to the fact ∀ i<|ts|.
SNR(ls iσ)).

have ∀ x∈Var(r). SNR((Var x)σ)
proof

fix x assume x ∈ Var(r)
hence x ∈ Var(l) using 〈(l , r) ∈ R〉 and 〈wf trs R〉

by (auto simp: wf trs def)
hence l B Var x by (auto simp: 〈l = Fun g ls〉 intro: var imp supteqp)
hence lσ B (Var x)σ by (rule suptp stable)
with 〈lσ ∈ T ∞R 〉

show SNR((Var x)σ) unfolding Tinf def by simp
qed

But then, since t ′ ∈ T ∞R , it is impossible for t ′ to be a subterm of a σ-instance
of some variable in r.

have ∀ x∈Var(r). (Var x)σ 4 t ′

proof
fix x assume x ∈ Var(r)
hence SNR((Var x)σ) using 〈∀ x∈Var(r). SNR((Var x)σ)〉 by simp
show (Var x)σ 4 t ′

proof
assume (Var x)σ D t ′

with 〈SNR((Var x)σ)〉 have SNR(t ′) using SN imp SN subt by auto
with 〈t ′ ∈ T ∞R 〉 show False unfolding Tinf def by auto

qed
qed

We know, however, that t ′ is a subterm of rσ. Thus, there is some subterm u
of r, such that, t ′ = uσ.

from subt instance and not subst imp subt [OF 〈rσ D t ′〉 this]
obtain u where r D u and t ′ = uσ by best

Moreover, u cannot be a variable, since this would directly contradict to

55

Chapter 5 Dependency Pair Framework

∀ x∈Var(r). SNR((Var x)σ).

moreover have u /∈ V
proof

assume u ∈ V
then obtain x where u = Var x by (cases u) auto
with 〈r D u〉 have r D Var x by simp
from var subt imp subt in vars[OF this] have x ∈ Var(r) .
with 〈∀ x∈Var(r). SNR((Var x)σ)〉 and 〈t ′ ∈ T ∞R 〉

show False by (simp add : Tinf def 〈u = Var x 〉 〈t ′ = uσ〉)
qed

moreover from 〈r D u〉 have rσ D uσ by (rule supteqp stable)
moreover from 〈t ′ ∈ T ∞R 〉 have uσ ∈ T ∞R by (simp add : 〈t ′ = uσ〉)
moreover have lσ 7 uσ
proof

assume lσ B uσ
with 〈lσ ∈ T ∞R 〉 have SNR(uσ) unfolding Tinf def by force
with 〈uσ ∈ T ∞R 〉 show False by (simp add : Tinf def)

qed
ultimately show ?thesis by auto

qed
moreover from 〈(l , r) ∈ R〉

have lσ ε→R rσ unfolding rrstep def ′ by best
ultimately

show ?thesis using 〈(l , r) ∈ R〉 and 〈?t >ε→∗R lσ〉 by (auto simp: t)
qed

Putting all this together we obtain the following lemma:

Lemma 5.3. Let R be a well-formed TRS. Then, for every term t ∈ T ∞R , there
exist a rewrite rule (l , r) ∈ R, a substitution σ, and a non-variable subterm
u of r, such that t >ε→∗R lσ, lσ ε→R rσ, and rσ D uσ. Further, lσ ∈ T ∞R ,
uσ ∈ T ∞R , and uσ is not a proper subterm of lσ.

In IsaFoR this is stated as:

[[WF(R); t ∈ T ∞R]] =⇒ ∃ l r u σ. (l , r) ∈ R ∧ r D u ∧ u /∈ V ∧ t >ε→∗R lσ ∧
lσ ε→R rσ ∧ rσ D uσ ∧ lσ ∈ T ∞R ∧ uσ ∈ T ∞R ∧ lσ 7 uσ

56

5.2 Dependency Pairs

This corresponds to Lemma 1 of Hirokawa and Middeldorp [17]. By using
Lemma 5.1, followed by repeated applications of Lemma 5.3, every nontermi-
nating term t, gives rise to an infinite sequence of the shape:

t = t1 D u1
>ε→∗R s1

ε→R t2 D u2
>ε→∗R s2

ε→R t3 D u3
>ε→∗R s3

ε→R · · ·

Our next goal is to simplify such a sequence by introducing a new TRS, the
so called dependency pairs of R. This allows to get rid of any positioning
constraints and subterm steps, resulting in

f(u1)→∗R f(s1)→DP(R) f(u2)→∗R f(s2)→DP(R) f(u3)→∗R f(s3)→DP(R) · · ·

where f is some way of marking the root symbol of a term, such that R-steps
at the root are no longer possible. The dependency pairs of a TRS are defined
in the next section.

5.2 Dependency Pairs

In IsaFoR, we need a concise notion of ‘marking.’ Moreover, since the type of
terms is parametrized by the type of function symbols, we cannot assume any
properties on them (like, a function symbol is a lowercase string). Thus, we
introduce a new type, denoting (potentially) marked symbols:

datatype α shp = Sharp α | Plain α

The name shp, stands for ‘sharp,’ and was chosen since in the literature, mark-
ing is usually done using a sharp symbol (]), and sometimes called sharping.
The type has two constructors, one (Sharp) for sharped function symbols and
another (Plain) for function symbols that are not marked (this is necessary
since all function symbols in a term, have to be of the same type).

Marking a term is done by sharping its root. To do that, we need an auxiliary
function plain::(α, β) term ⇒ (α shp, β) term, lifting unsharped terms into
the type of sharped terms.

plain (Var x) = Var x
plain (Fun f ts) = Fun (Plain f) (map plain ts)

(V ar x)] = Var x
(Fun f ts)] = Fun (Sharp f) (map plain ts)

57

Chapter 5 Dependency Pair Framework

Now we can define the dependency pairs of a TRS R as follows:

Definition 5.1 (Dependency Pairs). Given a TRS R, the set of its dependency
pairs DP(R) is given by

DP(R) = {(s, t) | ∃ l r f u. (l , r) ∈ R ∧ s = l] ∧ t = u] ∧ r D u ∧ root u
= Some f ∧ (f , num args u) ∈ DR ∧ l 7 u}

Note that this definition includes an improvement due to Dershowitz [9]: We
may safely ignore subterms of right-hand sides that are proper subterms of the
corresponding left-hand side. (This was already accounted for in Lemma 5.3.)
Further note that in examples we capitalize function symbols in order to indi-
cate sharping and thus write for example ADD instead of Sharp add.

Example 5.2. For the TRS of Example 5.1 we obtain the single dependency
pair

ADD(s(x), y)→ ADD(x, y)

reflecting its recursive call-structure.

When the original TRS has the type (α, β) trs, then its dependency pairs
have the type (α shp, β) trs. That means that typewise, rules from DP(R)
are incompatible with rules from R. For that reason, we need a lifting of the
TRS R into the proper type (using the plain-function from above):

ID(R) = {(s, t) | ∃ l r . s = plain l ∧ t = plain r ∧ (l , r) ∈ R}

At this point, we have the pair of TRSs (DP(R), ID(R)) at our disposal, where
the first component contains all the function calls of which we want to prove
termination, and the second component provides the rules for evaluating func-
tion arguments. Such a pair of TRSs, is called a dependency pair problem. The
obvious question is: How is a dependency pair problem related to the termina-
tion of a term rewrite system? We give an answer in the next section.

5.2.1 Termination of TRSs using Dependency Pairs

In this section, we show that a minimal counterexample for termination is
equivalent to a minimal infinite chain of DP(R)-steps relative to →∗ID(R). The
intuition is that every DP(R)-step corresponds to a (recursive) function call,
whereas an ID(R) sequence denotes evaluating the arguments of a function.

58

5.2 Dependency Pairs

Before we formally state the main theorem of this section, we give some nec-
essary definitions.

Definition 5.2 (DP Problems). A dependency pair problem is a pair of TRSs
(P, R). In IsaFoR, we use the type abbreviation

types (α, β) dpp = (α, β) trs × (α, β) trs

Definition 5.3 (Infinite Chains). An infinite (P,R)-chain is defined by

ichain (P, R) s t σ ≡ ∀ i . (s i , t i) ∈ P ∧ (t i)(σ i) →∗R (s (i+ 1))(σ (i+ 1))

where s and t are infinite sequences of terms, and σ is an infinite sequence of
substitutions.

Note that this definition of infinite chains is slightly different from the original
one, given by Arts and Giesl [1]. Instead of demanding a single substitution
that is used for all ID(R)-sequences between terms t i and s (i+ 1), as in [1],
we use an infinite sequence of substitutions. This avoids reasoning about fresh
variables and substitutions with infinite domains in the formalization of infinite
chains. (Note that IsaFoR’s definition of substitution allows infinite domains—
depending on the type of variables that is used. However, the advantage here,
is that we do not have to reason under the assumption of having an infinite
domain.)

Note that the right-hand sides of DP(R) have exactly the shape of the term u
from Lemma 5.3. In fact, since we are just interested in well-formed TRSs,
every term in T ∞R has a defined root (with respect to R), that is,

[[WF(R); t ∈ T ∞R]] =⇒ (root(t), num args t) ∈ DR

This implies that the right-hand sides of the dependency pairs cover all possible
us (as given by Lemma 5.3). It still remains to lift this observation to the proper
types.

Lemma 5.4. [[WF(R); t ∈ T ∞R]] =⇒ ∃ l r u σ. t] →∗ID(R) lσ ∧ (l , r) ∈ DP(R)
∧ rσ = u] ∧ u ∈ T ∞R

We see that for every minimally nonterminating term, after a finite number of
rewrite steps starting from its sharped version, there is a step (using a depen-
dency pair), such that the resulting term is again minimally nonterminating.

59

Chapter 5 Dependency Pair Framework

This, together with the definition of infinite chains, results in the notion of
minimal infinite chains.

Definition 5.4 (Minimal Infinite Chains). A minimal infinite (P,R)-chain is
defined by

ichainmin (P, R) s t σ ≡ ichain (P, R) s t σ ∧ (∀ i . SNR((t i)(σ i)))

for the infinite sequences of terms s and t, and the infinite sequence of substi-
tutions σ.

The only difference between minimal infinite chains and infinite chains, is that
the former demand all the intermediate (t i)(σ i) to be terminating with re-
spect to R. Finally, we are in a position where we can state the crucial connec-
tion between the termination of a TRS R and the corresponding DP problem
(DP(R), ID(R)). Whenever R is not terminating, then there is a minimal
infinite (DP(R), ID(R))-chain.

Theorem 5.1 (Nontermination implies Minimal Chains).
[[WF(R); ¬ SN(R)]] =⇒ ∃ s t σ. ichainmin (DP(R), ID(R)) s t σ

Here, (DP(R), ID(R)) is sometimes called the initial DP problem.

Example 5.3. Recall Examples 5.1 and 5.2, resulting in the initial DP problem:(
{ADD(s(x), y)→ ADD(x, y)},

{
add(0, y)→ y,

add(s(x), y)→ s(add(x, y))

})

5.3 Finiteness and Processors

In this section we introduce the dependency pair framework, as formalized
in IsaFoR. In the DP framework, we are concerned with the ‘termination be-
havior’ of DP problems, where the ‘termination behavior’ of a DP problem is
characterized by the existence of minimal infinite chains.

Definition 5.5 (Finiteness of DP Problems). We say that a dependency pair
problem (P, R) is finite whenever it does not allow any minimal infinite chains,
that is,

60

5.3 Finiteness and Processors

finite(P, R) ≡ @ s t σ. ichainmin (P, R) s t σ

The main advantage of using the DP framework over direct termination proofs
for TRSs is that there are stronger termination techniques for showing finiteness
of DP problems. To name a few of those so called (DP) processors: there is the
subterm criterion and usable rules, both relying on the minimality of infinite
chains; then there is the decomposition of the dependency graph, splitting
a single DP problem (possibly) into several smaller ones; further, there are
weakly monotone reduction pairs, which have weaker constraints than their
strictly monotone counterparts in the direct setting.

Definition 5.6 (Sound DP Processors). From the perspective of a termination
tool, a dependency pair processor (or processor for short) is a function taking a
DP problem (P, R) as input and returning either “no” (indicating that (P, R)
is not finite) or a set of new DP problems. A processor is sound, whenever
finiteness of all the generated DP problems implies finiteness of the given DP
problem. Hence, sound processors may be composed for proving finiteness of a
DP problem. In contrast to a termination tool, in our development, we do not
have to compute the result of applying a processor to a DP problem, but rather
have to check whether some given result really constitutes a correct application
of a processor. Thus, we model a processor by a function p::[(α, β) trs, (α,
β) trs, (α, β) trs, (α, β) trs] ⇒ bool, such that p P R Q S is True, whenever
the pair (Q, S) is in the result of applying the processor to the DP problem
(P, R). (Note that this is just a different, but equivalent, formulation. It does
not restrict our results in any way.) Then soundness of p is defined by

sound p ≡ ∀P R Q S. p P R Q S ∧ finite(Q, S) −→ finite(P, R)

By Theorem 5.1, a TRS that is nonterminating has a minimal infinite chain
with respect to its initial DP problem. Put differently, if the initial DP problem
of a TRS is finite, then the TRS is terminating. Thus, for proving termination
of a TRS, we try to prove finiteness of its initial DP problem. This is done by
recursively applying sound processors, thereby generating a tree of DP prob-
lems. A branch of this tree stops to grow, as soon as an applied processor
results in an empty set of new DP problems. At the end, we have a rooted
tree where all the leaves are finite DP problems, and by the soundness of all
the processors that are applied at non-leaf nodes, finiteness propagates up to
the root—the initial DP problem.

61

Chapter 5 Dependency Pair Framework

5.4 Chapter Notes

The DP framework was introduced by Giesl et al. [12] as a generalization of the
DP approach [1]. In its most general form, it is concerned with Q-restricted
rewriting, unifying techniques for full termination (that is, without a specific
evaluation strategy) and innermost rewriting. A simpler variant that just deals
with full rewriting (and is very similar to our Isabelle formalization of the DP
framework) can be found in [14].

62

Chapter 6

Subterm Criterion

Keep it short and simple.

Design Principle

In the last chapter, we gave our formalization of the dependency pair frame-
work. Thus, setting the stage for the automatic certification of termination
proofs. However, we are still lacking (sound) processors that can be applied
inside this framework. In the following we present the subterm criterion, a
processor that is especially nice, due to its simplicity.

Example 6.1. Taking the DP problem from Example 5.3, it can be seen that
the first argument of ADD does strictly decrease (in the sense that the first
argument of the right-hand side is a proper subterm of the first argument of
the left-hand side) in every recursive call. We will show that this is enough
to conclude finiteness of the DP problem (and thus termination of the original
system).

The subterm criterion covers exactly this kind of reasoning. We shall start by
presenting the subterm criterion in its original version. Then we reformulate
it as a processor in the DP framework. Afterwards we describe a generalized
version of the subterm criterion, due to a Coq formalization which was obtained
independently from our efforts in Isabelle. Finally, we give our formalization
in IsaFoR and conclude with some remarks on the practical applicability of the
generalized version.

63

Chapter 6 Subterm Criterion

6.1 Original Version

When Hirokawa and Middeldorp [17, 18] first introduced the subterm criterion,
the DP framework did not exist. Hence, the criterion covers more than it ac-
tually needs, if formulated as a DP processor. More specifically, in its original
version, the subterm criterion is concerned with cycles in the so called depen-
dency graph of a TRS. (Actually, also an optimization was introduced, using
strongly connected components instead of cycles and decomposing problems
recursively. This can be seen as the basis of the DP framework.) To appreciate
this formulation, we shall shortly present what this dependency graph actually
is.

Definition 6.1 (Dependency Graph). Recall the dependency pairs of a TRS R
(given by Definition 5.1). As already mentioned earlier, those encode the possi-
ble (recursive) calls of R. However, the DPs do not restrict the order in which
such calls may actually occur inside a rewrite sequence (that is, the mutual
dependencies of the recursive functions encoded by R). This is handled by the
dependency graph DG(R) of R, which is a directed graph whose vertices are
DP(R) and there is an edge from (s, t) ∈ DP(R) to (u, v) ∈ DP(R), if and only
if there exist substitutions σ and τ such that

tσ →∗R uτ

(Note that the dependency graph is in general not computable. Hence, in prac-
tice approximations are used. This will, however, not influence our discussion.)

The original version of the subterm criterion is as follows:

Theorem 6.1 (Hirokawa and Middeldorp [18], Theorem 8). Let R be a TRS
and let C be a cycle in DG(R). If there exists a simple projection π for C
such that π(C) ⊆ D and π(C) ∩ B 6= ∅ then there are no C-minimal rewrite
sequences.

In the above statement, a simple projection π is a function that maps a func-
tion application to one of its arguments, depending on the term’s root sym-
bol. Further, a C-minimal rewrite sequence corresponds to a minimal infinite
(C,R)-chain. (Since for a finite TRS R, we have a finite dependency graph
and thus, every infinite rewrite sequence eventually stays inside some cycle of

64

6.2 Subterm Criterion Processor

DG(R), we may prove termination by showing that none of DG(R)’s cycles C,
allows a C-minimal rewrite sequence.)

6.2 Subterm Criterion Processor

By reformulating the same criterion as a DP processor (as for example already
done by Thiemann [42]), we roughly arrive at the following statement:

Theorem 6.2. Consider the DP problem (P,R). Let π be a simple projection
such that P ⊆ Dπ. Then, the function returning {(P \Bπ,R)}, is a sound DP
processor.

Here, for an arbitrary relation R, by Rπ, we denote {(s, t) | (π(s), π(t)) ∈ R}.
(In principle, there would be some additional syntactic restrictions. See for
example Thiemann [42] and Sternagel and Thiemann [38]. For DP problems
originating from TRSs, those are always satisfied. We will come back to this
issue when we present our Isabelle formalization.)

The nice thing, when formulating the subterm criterion as a processor, is that
we do not have to care about dependency graphs any more (there are separate
processors specifically for incorporating the information provided by approxi-
mated dependency graphs).

6.3 Generalized Subterm Criterion

Only recently, a generalization of the subterm criterion (together with a Coq
formalization) was given by Contejean et al. [7]. Before we can address the
differences to the original subterm criterion, we need to be more formal about
simple projections.

Definition 6.2 (Simple Projections). A simple projection for a set of function
symbols F , is a mapping π that assigns to every (f, n) ∈ F an argument
position 0 < i ≤ n. This is extended to terms by π(f(t1, . . . , tn)) = ti.

The first generalization, is replacing simple projections by what is called pro-
jections in [7].

65

Chapter 6 Subterm Criterion

Definition 6.3 (Projections). A projection for a set of function symbols F , is
a mapping π that assigns to every (f, n) ∈ F an arbitrary natural number i.
The extension to terms is defined by

π(t) =

{
ti if t = f(t1, . . . , tn) and 0 < i ≤ n
t otherwise

This means that when using projections instead of simple projections, we gain
the possibility of identity mappings (that is, not projecting a term at all).

Now, the generalized subterm criterion was introduced as follows:

Theorem 6.3 (Contejean et al. [7], Theorem 4). Let R be a TRS and P be
a subset of DP(R). If there exists a projection π such that

• P can be split into P ′] (s, t),

• tB π(t),

• π(s) (B ∪→R)+ π(t),

• and for every pair (u, v) ∈ P ′ that is strongly connected to (s, t), we have
π(u) (B ∪→R)∗ π(v),

then, finiteness of (P ′,R) implies finiteness of (P,R) (where we use a slightly
different notation from that actually used in [7]).

We now see that the second generalization was to allow (B∪→R)+ ((B∪→R)∗)
instead of just B (D). The statement involving “strongly connected to,” seems
to be equivalent to incorporating the dependency graph in the definition of the
generalized subterm criterion.

6.4 Generalized Subterm Criterion Processor

In [38], we gave a formalization of Theorem 6.2 that was obtained independently
from the development of Contejean et al. [7]. After examining Theorem 6.3 and
consulting our own Isabelle formalization, we found that within the soundness
proof we actually did already use the more general relation (involving rewrite

66

6.4 Generalized Subterm Criterion Processor

steps) and it just did not occur to us that its usage could be lifted to the out-
ermost level (which can be verified by browsing the freely available mercurial
repository of our development). Switching from simple projections to projec-
tions did not pose any problems either. This leads us to the latest version of
the generalized subterm criterion as formalized in IsaFoR.

Theorem 6.4 (Generalized Subterm Criterion Processor). Consider the DP
problem (P,R). Let π be a projection such that

1. P − P ′ ⊆ ((B ∪→R)+)π,

2. P ′ ⊆ =π, and

3. ∀(s, t) ∈ P. s /∈ V ∧ t /∈ V ∧ root(t) /∈ DR.

Then, the function returning {(P ′,R)}, is a sound DP processor.

Note that condition 3 will always be satisfied by DP problems that stem from
a TRS R, due to the construction of DP(R). Hence, it seems as if we have an
even more general criterion than the one from Theorem 6.3, since we do not
require that for right-hand sides of removed rules the projection was actually
a simple one (we will put this claim into perspective in the last section).

In the next section we give the soundness proof of the generalized subterm
criterion processor, as formalized in IsaFoR.

6.4.1 Soundness

We prove soundness of the generalized subterm criterion processor by show-
ing that it preserves minimal infinite chains. In fact, we even show a slightly
stronger result, namely that the subterm criterion processor is chain identify-
ing. For shifting an infinite sequence f by j positions to the left, we use the
function

shift f j = (λi . f (i + j))

Definition 6.4 (Chain-Identifying DP Problems). Essentially, a DP problem
(P ′, R ′) is said to be chain-identifying with respect to (P, R), whenever every
minimal infinite chain in (P, R) has a tail in (P ′, R ′). The formal definition
is:

67

Chapter 6 Subterm Criterion

chain-id (P,R) (P ′,R ′) ≡

R ′ ⊆ R ∧

(∀ s t σ.

ichainmin (P, R) s t σ −→

(∃ i . ichain (P ′, R ′) (shift s i) (shift t i) (shift σ i)))

Now, instead of just saying that for every minimal infinite chain in the original
DP problem, there exists a minimal infinite chain in the new DP problem (as
is done in the case of soundness), we get a direct connection between those two
chains: after a finite number of steps, the minimal chain in the original DP
problem is identical to the chain in the new DP problem. Together with the
condition R ′ ⊆ R, this implies that the newly obtained chain is also minimal.
Hence, chain-identifyingness impliess soundness (as has been shown in IsaFoR
by the lemma ci proc to sound proc).

Since, the subterm criterion processor does not modify R, the first conjunct
trivially holds. The advantage of showing chain-identifyingness over just preser-
vation of minimal infinite chains, is that in the presence of labeling transfor-
mations (see also Chapter 8), it is allowed to remove labels, whenever only
chain-identifying processors have been used before. We do not want to go into
details here. Just remember, that chain-identifyingness implies soundness of
processors.

Recall our assumptions:

assumes 1 : P − P ′ ⊆ ((B ∪ →R)+)π
and 2 : P ′ ⊆ =π

and 3 : ∀ (s, t)∈P. s /∈ V ∧ t /∈ V ∧ (root(t), num args t) /∈ DR
and mchain: ichainmin (P, R) s t σ

shows ∃ i . ichain (P ′, R) (shift s i) (shift t i) (shift σ i)
proof −

We proceed by a case distinction: Either there is a point, from which on only
pairs of P ′ are used, or not.

have (∃ j . ∀ i≥j . (s i , t i) ∈ P ′) ∨ (∀ i . ∃ j≥i . (s j , t j) /∈ P ′) by auto
thus ?thesis

68

6.4 Generalized Subterm Criterion Processor

proof

Assume that there is an index j such that all later pairs are in P ′. Then, we can
construct an infinite chain, by just shifting all indices in the original sequences
by j.

assume ∃ j . ∀ i≥j . (s i , t i) ∈ P ′
then obtain j where tail : ∀ i≥j . (s i , t i) ∈ P ′ by auto
let ?s = shift s j and ?t = shift t j and ?σ = shift σ j
from mchain have rsteps: ∀ i . (t i)(σ i) →∗R (s (i+ 1))(σ (i+ 1)) by simp
from tail have ∀ i . (?s i , ?t i) ∈ P ′ by auto
moreover from rsteps

have ∀ i . (?t i)(?σ i) →∗R (?s (i+ 1))(?σ (i+ 1)) by auto
ultimately show ?thesis by auto

next

In the other case, we will always find an index where a pair from P is used,
independently from how far we proceed inside our infinite chain.

assume ∀ i . ∃ j≥i . (s j , t j) /∈ P ′

Once again, the Axiom of Choice comes in handy by providing a function f
giving those indices. That is, for every i, we get an index f i which is greater
than or equal to i, such that the f i -th pair of the sequence is not in P ′.

from choice[OF this] obtain f ::nat ⇒ nat where f geq : ∀ i . f i ≥ i
and P seq : ∀ i . (s (f i), t (f i)) ∈ P − P ′ using mchain by auto

From assumption 3, we get that all the s i and t i are non-variable terms.
Further, since applying a substitution to a function application does not change
the root symbol, the root of (t i)(σ i) is not defined in R.

from 3 and mchain
have s no vars: ∀ i . (s i) /∈ V and t no vars: ∀ i . (t i) /∈ V by auto

have undef root : ∀ i . (root((t i)(σ i)), num args ((t i)(σ i))) /∈ DR 〈proof

omitted〉

To shorten the following statements we introduce some abbreviations. We use
?S instead of B ∪ →R and ?s as well as ?t for the projected sequences with
applied substitutions, respectively.

69

Chapter 6 Subterm Criterion

let ?S = B ∪ →R
let ?s = λi . π ((s i)(σ i))
let ?t = λi . π ((t i)(σ i))

Now, we show that all the π (s i)(σ i) are connected by B ∪ →R-sequences.

have seq : ∀ i . (?s i , ?s (i+ 1)) ∈ ?S ∗

proof
fix i

For every single pair (s i , t i), we know that it is either in P without P ′, or
that it is in P ′ itself. This fact is used in a case distinction to show that the
projected pairs (with applied substitutions) are connected by (B ∪ →R)∗.

from mchain have (s i , t i) ∈ (P − P ′) ∪ P ′ by simp
hence (?s i , ?t i) ∈ ?S ∗

proof

In the former case, we obtain the desired result with the help of condition 1,
together with the fact

supt rstep trancl stable:∧
s t R σ. (s, t) ∈ (B ∪ →R)+ =⇒ (sσ, tσ) ∈ (B ∪ →R)+

assume (s i , t i) ∈ P − P ′
with 1 have (π (s i), π (t i)) ∈ ?S+ by auto
from supt rstep trancl stable[OF this, of σ i]

have (?s i , ?t i) ∈ ?S+

using s no vars[THEN spec, of i]
and t no vars[THEN spec, of i] by simp

thus ?thesis ..
next

In the latter case, condition 2 suffices.

assume (s i , t i) ∈ P ′
with 2 have π (s i) = π (t i) by auto
hence (π (s i))(σ i) = (π (t i))(σ i) by simp
hence ?s i = ?t i

using s no vars[THEN spec, of i]

70

6.4 Generalized Subterm Criterion Processor

and t no vars[THEN spec, of i] by simp
thus ?thesis by simp

qed

Having the part from π (s i)(σ i) to π (t i)(σ i), we still have to show that
(B ∪ →R)∗ leads us from π (t i)(σ i) to π (s (i+1))(σ (i+1)). Here, we use the
fact that a rewrite sequence starting at a terminating term whose root is not de-
fined, is preserved by applying a projection. A proof of SN elt rsteps proj term
can be found in Appendix A. Further, rtrancl Un subset is part of Isabelle’s
library and provides the fact:

rtrancl Un subset : R∗ ∪ S ∗ ⊆ (R ∪ S)∗

moreover have (?t i , ?s (i+ 1)) ∈ ?S ∗

proof −
from mchain have sn: SNR((t i)(σ i)) by (simp)
from mchain have (t i)(σ i) →∗R (s (i+ 1))(σ (i+ 1)) by simp
from SN elt rsteps proj term[OF this sn undef root [THEN spec, of i]]

show ?thesis using rtrancl Un subset [of B →R] by auto
qed

Combining the above two facts yields the desired result.

ultimately show (?s i , ?s (i+ 1)) ∈ ?S ∗ by simp
qed

Since all the π (s i)(σ i) are connected by (B ∪ →R)∗, we can reach every
larger index, starting from π (s i)(σ i), using B ∪ →R.

from iseq imp steps[OF seq] and f geq
have between: ∀ i . (?s i , ?s (f i)) ∈ ?S ∗ by simp

Now, we use the same trick as already for non strict ending, by using the
function shift by in order to pinpoint those indices of the sequence that we
obtain by the choice function f. We abbreviate the resulting sequence by ?s ′.

let ?s ′ = λi . π (s (shift by f (i+ 1)))(σ (shift by f (i+ 1)))

Before we can show that the ?s ′ i are connected by non-empty ?S sequences,
we need to get a connection between ?s i and ?s ((f i) + 1).

71

Chapter 6 Subterm Criterion

have ∀ i . (?s i , ?s ((f i) + 1)) ∈ ?S+

proof
fix i
from P seq and 1 have (π (s (f i)), π (t (f i))) ∈ ?S+ by auto
from supt rstep trancl stable[OF this]

have (π ((s (f i))(σ (f i))), π ((t (f i))(σ (f i)))) ∈ ?S+

using s no vars[THEN spec, of f i] t no vars[THEN spec, of f i]
by simp

with between[THEN spec, of i]
have (?s i , π ((t (f i))(σ (f i)))) ∈ ?S+ by simp

moreover
have (π ((t (f i))(σ (f i))), π ((s ((f i) + 1))(σ ((f i) + 1)))) ∈ ?S ∗

proof −
from mchain

have sn: SNR((t (f i))(σ (f i))) by (simp)
from mchain

have (t (f i))(σ (f i)) →∗R (s ((f i) + 1))(σ ((f i) + 1)) by simp
from SN elt rsteps proj term[OF this sn

undef root [THEN spec, of f i], of π]
show ?thesis
using rtrancl Un subset [of B →R] by auto

qed
ultimately show (?s i , ?s ((f i) + 1)) ∈ ?S+ by simp

qed
hence ∀ i . (?s ′ i , ?s ′ (i+ 1)) ∈ ?S+ by simp
with refl [of ?s ′ 0]

have ∃S . S 0 = ?s ′ 0 ∧ (∀ i . (S i , S (i+ 1)) ∈ ?S+) by best

Thus we have constructed an infinite ?S+-sequence, starting at ?s ′ 0.

hence ¬ SN?S+(?s ′ 0) unfolding SN defs by simp

But ?s ′ 0 is terminating with respect to ?S+, yielding a contradiction.

moreover have SN?S+(?s ′ 0)
proof −

Proving that ?s ′ 0 is terminating with respect to ?S+, proceeds as follows.

72

6.4 Generalized Subterm Criterion Processor

First we show that we reach ?s ′ 0 from the initial term π (t 0)(σ 0), by using
?S.

have (?t 0 , ?s ′ 0) ∈ (?S+)∗

proof −
from mchain have sn: SNR((t 0)(σ 0)) by (simp)
from mchain have (t 0)(σ 0) →∗R (s (0 + 1))(σ (0 + 1)) by simp
from SN elt rsteps proj term[OF this sn

undef root [THEN spec, of 0], of π]
have (?t 0 , ?s (0 + 1)) ∈ ?S ∗

using rtrancl Un subset [of B →R] by auto
moreover have (?s (0 + 1), ?s ′ 0) ∈ ?S ∗

proof −
have shift by f (0 + 1) ≥ (0 + 1) by simp
from iseq imp steps[OF seq this] show ?thesis by simp

qed
ultimately show ?thesis by simp

qed

Then, we show that π (t 0)(σ 0) does not allow infinite ?S+-sequences. Here,
we use the fact that termination with respect to→R, implies termination with
respect to B ∪ →R. The proof of SN elt rstep imp SN elt supt union rstep is
to be found in Appendix A.

moreover have SN?S+(?t 0)
proof −

from mchain have SNR((t 0)(σ 0)) by (simp)
moreover have (t 0)(σ 0) D ?t 0 by (simp add : supteq proj term)
ultimately have SNR(?t 0)

using subterm preserves SN [of R (t 0)(σ 0) ?t 0] by auto
from SN elt imp SN elt trancl [OF

SN elt rstep imp SN elt supt union rstep[OF this]]
show ?thesis .

qed

Then, since descendants of terminating terms are also terminating, we get that
?s ′ 0 is terminating.

ultimately show ?thesis by (rule steps preserve SN elt)

73

Chapter 6 Subterm Criterion

qed
ultimately show ?thesis ..

qed
qed

6.5 Practicability

As usual, there is not just one viewpoint. We do at last have the perspective of
certifiers (taking full proofs and ‘merely’ checking their correctness) as well as
the perspective of termination tools (trying to find as many proofs as possible,
as fast as possible).

For a certifier, the generalized subterm criterion (processor) is clearly an ad-
vancement over the old version. But how about termination tools? Do they
have to change their implementations of the subterm criterion in order to ac-
commodate identity mappings and the possibility of rewrite steps? In the
following we will argue that this is not the case.

6.5.1 Identity Mappings

Let us first make some (commonly accepted) restrictions. In the remainder,
whenever we talk about a DP problem (P,R), we implicitly assume that for all
(s, t) ∈ P, s and t are not variables. We further assume that the root symbols
of s and t do not occur anywhere below the root in P, and not at all in R. We
denote such function symbols by capital letters, that is, s = F (s1, . . . , sm) and
t = G(t1, . . . , tn). This assumptions are naturally satisfied by the construc-
tion of the dependency pairs (for well-formed TRSs). Further, virtually every
existing DP processor preserves this assumptions.

Now consider some DP problem (P,R) where the generalized subterm criterion
processor is applicable.

We will first show that it is not possible for an identity mapping to occur
just at the right-hand side of a pair (s, t) ∈ P. Assume to the contrary that
it does, that is, there is a pair (s, t) ∈ P, such that s = F (s1, . . . sm) with
π(F) = i ∈ {1, . . . ,m} and t = G(t1, . . . , tn) with π(G) = j /∈ {1, . . . , n}.

74

6.5 Practicability

Then, π(s) = si and π(t) = G(. . .). But the symbol G may neither occur in si
(since it is below the root of a left-hand side of P), nor in any rule of R. Thus,
no rewrite sequence starting from some subterm of si could ever introduce G.
This implies that π(s) (B ∪→R)∗ π(t) is impossible and hence contradicts the
applicability of the generalized subterm criterion.

Next, we show that we can also get rid of the cases where an identity mapping
does just occur at the left-hand side of some pair. Assume that we have such
a pair, that is, (s, t) ∈ P where s = F (s1, . . . , sm) with π(F) = i /∈ {1, . . . ,m}
and t = G(t1, . . . , tn) with π(G) = j ∈ {1, . . . , n}. This implies F 6= G. We
further know that F (since it uses an identity mapping) does not occur just
on the right-hand side of any pair in P. But then, (s, t) cannot be strongly
connected to any other pair in P (since once we leave the set of pairs having
F as root of both sides by means of (s, t) there is no way to come back). For
Theorem 6.3, if (s, t) is the pair to be removed, we can just take an arbitrary
projection to some si and will still be able to apply the criterion (since no other
pair of P is strongly connected to (s, u)); otherwise (for the same reason) we
can ignore the pair (s, t) completely. Concerning Theorem 6.4, it is enough to
assume that our supposed termination tool actually generating the proof, uses
at least the weakest form of dependency graph analysis, since then we will only
have to consider strongly connected components of the dependency graph, but
(s, t) can never be part of such components.

Finally, consider that there is some pair (s, t) ∈ P where on both sides an iden-
tity mapping is used. That is, s = F (s1, . . . , sm) with π(F) /∈ {1, . . . ,m} and
t = G(t1, . . . , tn) with π(G) /∈ {1, . . . , n}. Considering π(s) (B ∪→R)∗ π(t),
we can restrict to π(s) →∗R π(t), since G may not occur below the root of s.
Further, rewriting cannot change the root of s (since it does not occur in R)
and hence F = G and m = n. But then π(s) →∗R π(t) implies that for all
k ∈ {1, . . . , n}, we have sk →∗R tk. For Theorem 6.3 this is already enough
(since we do only remove one pair at a time and can thus just take the appro-
priate k for this rule). Concerning Theorem 6.4, it could be the case that there
where several pairs of the form (F (. . .), F (. . .)) that could be removed all at
once. Now only those can be removed for which there is a non-empty rewrite
sequence in the k-th argument (note that for all the others the k-th argument
stays the same). This is not really a problem, since we can take almost the
same simple projection where we just change the k appropriately for a further

75

Chapter 6 Subterm Criterion

application of the processor. So, the worst that could happen, is that we now
need several applications of Theorem 6.4 instead of just one.

Example 6.2. Consider the following (contrived) TRS for addition and multi-
plication.

0 + y → y 0× y → 0

s(x) + y → s(x+ y) (s(x) + y)× z → s(x+ y)× z
x× (s(y) + z)→ x× s(y + z)

Of the five dependency pairs, only two remain, after decomposing the estimated
dependency graph and applying the original version of the subterm criterion,
where we use M instead of ×]:

M(s(x) + y, z)→ M(s(x+ y), z)
M(x, s(y) + z)→ M(x, s(y + z))

Using an identity mapping for M we can get rid of both DPs at once (by a
single rewrite step, respectively).

Now, if we ban identity projections, we have to fix an argument position.
Regardless of the position we choose, we can remove one DP (since there is a
rewrite step) and remain with the other (where the projected left- and right-
hand sides are equal). By a second application of the generalized subterm
criterion without identity mappings, this time choosing a different position
than before, we get rid of the remaining dependency pair. (Note that this
example cannot be proven terminating by just using the original version of the
subterm criterion together with the decomposition of the estimated dependency
graph.)

This indicates that identity mappings are not useful in practice and should
thus be avoided by termination tools, since taking them into account would
just increase the search space.

6.5.2 Rewrite Steps

Recall that what makes the subterm criterion so attractive is its speed and
its simplicity. When expanding an existing implementation of the subterm

76

6.6 Chapter Notes

criterion to take also rewriting steps into account, this will have a negative
impact on its performance. Even worse, up to date, there is no automatically
found proof using the generalized subterm criterion, which could not also be
found by just using the subterm criterion in its original version. This seems
to indicate that termination tools do not really have to worry about changing
their implementations of the subterm criterion.

6.6 Chapter Notes

We have shown how the subterm criterion [17, 18] evolved from its original
version to a (generalized) processor of the DP framework [7, 38]. We further
indicated that the latest advancements for the subterm criterion, although nice
in theory, do not have a great impact on termination tools. Inside IsaFoR, our
formalization of the subterm criterion is combined with a formalization of size-
change termination due to Krauss [24] to yield a size-change processor based
on the subterm relation.

77

Chapter 7

Signature Extensions

A signature always reveals a man’s character—and
sometimes even his name.

Evan Esar

So, how was your weekend?
Did you spend it chasing down wild signatures?

Billy
Dr. Horrible’s Sing-Along Blog

In the literature, terms are usually built with respect to some signature and
some countably infinite set of variables. Here, a signature is a set of function
symbol arity pairs, where the arity of a function symbol determines, how many
arguments the function symbol takes. However, neither of those restrictions
applies to our (α, β) term data type. In this chapter, we go into restrict-
ing terms to a given signature. For termination analysis, it is important to
know whether termination results for terms that are built exclusively over the
function symbols occurring in a given TRS, extend to arbitrary terms. Put
differently: after proving termination of a given TRS, can we be sure that the
result holds for arbitrary inputs?

7.1 Well-Formed Terms

Our first goal, is to show that it suffices to prove termination for terms built over
F(R) (see Definition 4.6), in order to conclude termination of R for arbitrary
terms. Therefor, we need the inductively defined set of well-formed terms.

79

Chapter 7 Signature Extensions

Definition 7.1 (Well-Formed Terms). Given a signature F , the set of well-
formed terms with respect to F , is defined by the rules:

Var x ∈ T (F)
(f , |ts|) ∈ F ∀ t∈ts. t ∈ T (F)

Fun f ts ∈ T (R)

Hence, a variable is a well-formed term and, whenever all elements of the list
ts are well-formed terms and additionally f with arity |ts| is in F , we may
conclude that the composed term Fun f ts is well-formed.

Reasoning about Well-Formed Terms.
The well-formed terms over a signature F are formalized by the inductively defined
set T (F) (internally, we use the name wf terms), constructed by the rules:

wf terms.Var : Var x ∈ T (F)
wf terms.Fun: [[(f , |ts|) ∈ F ;

∧
t . t ∈ ts =⇒ t ∈ T (F)]] =⇒ Fun f ts ∈ T (F)

Definition 7.2 (Well-Formed Contexts). Further, the set of well-formed con-
texts with respect to F , is given by:

� ∈ C(F)
(f , |ss @ ts|+ 1) ∈ F ∀ t∈ss @ ts. t ∈ T (F) D ∈ C(F)

More f ss D ts ∈ C(F)

Clearly, the empty context is well-formed (since otherwise, the set of well-
formed contexts would be empty). We obtain a well-formed context from a
function symbol f, two lists of well-formed terms ss and ts, and a well-formed
context D, whenever the number of terms in ss and ts, together with D, corre-
sponds to the arity of f.

Reasoning about Well-Formed Contexts.
Again, we use an inductively defined set. The internal name of C(F) is wf ctxts F and
it is defined by the rules:

wf ctxts.Hole: � ∈ C(F)
wf ctxts.More:
[[(f , |ss @ ts|+ 1) ∈ F ;

∧
t . t ∈ ss @ ts =⇒ t ∈ T (F); D ∈ C(F)]]

=⇒ More f ss D ts ∈ C(F)

Now, proving termination for terms built over F(R), is the same as proving
termination for the rewrite relation →R, but restricted to well-formed terms
over F(R).

80

7.2 Signature Extensions Preserve Termination

Definition 7.3 (Well-Formed Rewrite Relation). The well-formed rewrite re-
lation induced by a TRS R, is defined as follows:

þR ≡ {(s, t) | s →R t ∧ s ∈ T (F(R)) ∧ t ∈ T (F(R))}

Reasoning about the well-formed Rewrite Relation.
The ASCII name of þR is wfrstep R. Hence, its definition is available under the name
wfrstep def.

7.2 Signature Extensions Preserve Termination

Having the well-formed rewrite relation, we can state the theorem about ter-
mination preservation as follows.

Theorem 7.1. SN(þR) = SN(R)

Since the direction from right to left is trivial, we concentrate on the converse
(actually in its contrapositive form): ¬ SN(R) =⇒ ¬ SN(þR). First, consider
the auxiliary function called clean

JVar yKF = Var y
JFun f tsKF = (if (f , |ts|) ∈ F then Fun f (map J·KF ts) else z)

which is used to remove unwanted function symbols from terms. Here, z is an
arbitrary but fixed variable. That is, J·KF replaces every maximal subterm of
its argument that has a root which is not in F , by z. The general structure of
our proof consists of the following three parts:

1. First, we assume that WF(R) and ¬ SN(R). Then, by Theorem 5.1, we
obtain an infinite (DP(R), ID(R))-chain.

2. Then, we show that every infinite chain can be transformed into a clean
infinite chain.

3. Finally, we show completeness of the DP transformation for well-formed
terms, that is, a clean infinite (DP(R), ID(R))-chain can be transformed
into an infinite þR-rewrite sequence.

Putting all this together, we obtain [[WF(R); SN(þR)]] =⇒ SN(R). Since every
non well-formed TRS is nonterminating, this results in a proof of Theorem 7.1.

81

Chapter 7 Signature Extensions

It remains to show the following two lemmas.

[[Fun(P, R) ⊆ F ; ichain (P, R) s t σ]] =⇒ ichain (P, R) s t JσKF
ichain (DP(R), ID(R)) s t JσK](F(R)) =⇒ ¬ SN(þR)

where we use the abbreviations Fun(P, R) ≡ F(P) ∪ F(R) and](R) ≡ {(Plain
f , n) | (f , n) ∈ R} ∪ {(Sharp f , n) | (f , n) ∈ R}.

7.2.1 Cleaning Preserves Infinite Chains

The first lemma states that whenever there is an infinite chain, there is also
an infinite chain where only ‘clean’ terms are used. Here, by definition, the
sequences s and t consist solely of ‘clean’ terms and thus only the substitutions
of σ need to be cleaned.

Lemma 7.1. If there is an infinite (P, R)-chain over the sequences s, t, and
σ, then cleaning σ (with respect to a superset of Fun(P, R)) results in an
infinite chain of terms that are well-formed (since the terms of s and t are
already well-formed).

lemma ichain imp clean ichain:
assumes Fun(P, R) ⊆ F and ichain (P, R) s t σ
shows ichain (P, R) s t JσKF

proof −

As usual, we deconstruct an infinite chain into steps in P and sequences in R.

from 〈ichain (P, R) s t σ〉 have P seq : ∀ i . (s i , t i) ∈ P
and seq : ∀ i . (t i)(σ i) →∗R (s (i+ 1))(σ (i+ 1)) by auto

By definition of Fun(P, R), we further know that the function symbols of P
as well as those of R, are contained in F .

from 〈Fun(P, R) ⊆ F 〉 have F(P) ⊆ F and F(R) ⊆ F by simp+

This implies that all the s i and t i are well-formed with respect to F .

have wf s: ∀ i . s i ∈ T (F) 〈proof omitted〉
have wf t : ∀ i . t i ∈ T (F) 〈proof omitted〉

82

7.2 Signature Extensions Preserve Termination

Then, we use the fact that R-sequences are preserved by cleaning (this is
indeed the key lemma of this proof). The proof of this fact is to be found in
the Appendix.

have clean seq : ∀ i . J(t i)(σ i)KF →∗R J(s (i+ 1))(σ (i+ 1))KF
using seq rsteps imp clean rsteps[OF 〈F(R) ⊆ F 〉] by blast

It remains to ‘distribute’ the cleaning function over the application of substi-
tutions.

have ∀ i . (t i)Jσ iKF →∗R (s (i+ 1))Jσ (i+ 1)KF
proof

fix i
have clean t : J(t i)(σ i)KF = (t i)Jσ iKF

using clean subst apply term[OF wf t [THEN spec[of i]]]
unfolding o def by (cases σ i) auto

have clean s: J(s (i+ 1))(σ (i+ 1))KF = (s (i+ 1))Jσ (i+ 1)KF
using clean subst apply term[OF wf s[THEN spec[of i+ 1]]]
unfolding o def by (cases σ (i+ 1)) auto

from clean seq [THEN spec[of i]]
show (t i)Jσ iKF →∗R (s (i+ 1))Jσ (i+ 1)KF
unfolding clean s clean t .

qed
with P seq show ?thesis by auto

qed

7.2.2 DP Transformation for Well-Formed Terms is Complete

The second lemma is a completeness result for the DP Transformation, when
considering only well-formed terms. That is, whenever we have a clean infinite
chain using the initial DP problem, then this implies nontermination of the
corresponding well-formed rewrite relation.

Lemma 7.2. If there is an infinite (DP(R), ID(R))-chain over well-formed terms
(with respect to](F(R))), then the well-formed rewrite relation of R is not
terminating.

83

Chapter 7 Signature Extensions

lemma clean ichain imp not SN wfrstep:
assumes ichain: ichain (DP(R), ID(R)) s t JσK](F(R))

shows ¬ SN(þR)

We start by a case distinction on whether R is well-formed or not. If it is
not, then we trivially obtain nontermination of þR (using a construction very
similar to the one of Lemma 4.1).

proof (cases WF(R))
case False show ?thesis 〈proof omitted〉

next
case True
let ?F =](F(R))
let ?c = λt . JtK?F
from ichain have P seq : ∀ i . (s i , t i) ∈ DP(R)

and seq : ∀ i . (t i)(?c (σ i)) →∗ID(R) (s (i+ 1))(?c (σ (i+ 1)))
by auto

We define a function modifying a substitution such that its results are un-
sharped and cleaned. The function for unsharping is abbreviated to u, for
brevity.

u (Var x) = Var x
u (Fun f ts) = Fun (case f of Sharp g ⇒ g | Plain g ⇒ g) (map u ts)

let ?cu = λσ. case σ of Subst s ⇒ Subst (J·KF(R) ◦ u ◦ s)

By construction of the dependency pairs, for every (u, v) ∈ DP(R), we obtain
a context C, such that the unsharped version of u is a left-hand side of some
rule in R and C [u v] is the corresponding right-hand side. Additionally, C is
well-formed (since it is part of a rule).

have ∀ i . ∃C . C ∈ C(F(R)) ∧ (u (s i), C [u (t i)]) ∈ R
〈proof omitted〉

By the Axiom of Choice, we then obtain such a context for every (s i , t i).

from choice[OF this] obtain C
where ∀ i . C i ∈ C(F(R)) ∧ (u (s i), (C i)[u (t i)]) ∈ R by best

hence wf ctxt : ∀ i . C i ∈ C(F(R))

84

7.2 Signature Extensions Preserve Termination

and rules: ∀ i . (u (s i), (C i)[u (t i)]) ∈ R by auto

By applying the (cleaned and unsharped) substitutions to the rules, we obtain
a sequence of R-rewrite steps taking place at the root (which are however, not
necessarily connected to each other).

from rules have root steps:
∀ i . (u (s i))(?cu (σ i)) →R ((C i)(?cu (σ i)))[(u (t i))(?cu (σ i))]
using rstep.id [THEN rstep.subst , of R] by force

For convenience we introduce some more abbreviations. Here, D is an aux-
iliary function that stacks contexts and applies substitutions as needed for
reconstructing R steps from DP-steps. It is defined by

D C σ 0 = �
D C σ (i+ 1) = (D C σ i) ◦ (C i)(σ i)

Hence ?C i denotes the context used in the i -th step, whereas ?s i and ?t i are
the corresponding terms.

let ?C = D C (λi . ?cu (σ i))
let ?s = λi . (?C i)[(u (s i))(?cu (σ i))]
let ?t = λi . (?C (Suc i))[(u (t i))(?cu (σ i))]
have ctxt seq : ∀ i . (?s i) →R (?t i) using root steps by auto

Since every rewrite step that is possible in ID(R), is also possible in R, from
∀ i . (t i)(JσK](F(R)) i) →∗ID(R) (s (i + 1))(JσK](F(R)) (i + 1)), we obtain a
corresponding rewrite sequence in R.

from seq
have ∀ i . u ((t i)(?c (σ i))) →∗R u ((s (i+ 1))(?c (σ (i+ 1)))) (is ∀ i . ?Q i)
using rstepIDs imp rsteps by best

This sequence can then be transformed by ‘distributing’ u over substitution-
applications.

have ∀ i . (u (t i))(?cu (σ i)) →∗R (u (s (i+ 1)))(?cu (σ (i+ 1)))
(is ∀ i . ?P i)
〈proof omitted〉

This yields the connection between the ?t i and ?s (i+ 1).

85

Chapter 7 Signature Extensions

hence steps: ∀ i . (?t i) →∗R (?s (i+ 1))
using rsteps closed ctxt by best

In combination with the steps of ctxt seq, we then obtain non-empty rewrite
sequences between two consecutive elements of ?s.

have trancl : ∀ i . (?s i) →+
R (?s (i+ 1)) 〈proof omitted〉

Further, all the ?C i are well-formed, since they are parts of right-hand sides
of R.

have ∀ i . ?C i ∈ C(F(R)) by simp

Moreover, since every s i is a left-hand side of some pair in DP(R) and ?cu
removes function symbols that are not in F(R), all the (u (s i))(?cu (σ i)) are
well-formed.

moreover have ∀ i . (u (s i))(?cu (σ i)) ∈ T (F(R)) 〈proof omitted〉

Putting these two facts together, yields that the ?s i are well-formed.

ultimately have ∀ i . ?s i ∈ T (F(R)) by best
with trancl

have seq : ∀ i . (?s i , ?s (i+ 1)) ∈
{(x , y) | x y . x →+

R y ∧ x ∈ T (F(R)) ∧ y ∈ T (F(R))} (is ∀ i . ∈ ?R)
by blast

This enables us to build an infinite ?R-sequence, starting at ?s 0 and thus
proves nontermination of ?R.

have ?s 0 = ?s 0 ..
from this and seq

have ∃S . S 0 = ?s 0 ∧ (∀ i . (S i , S (i+ 1)) ∈ ?R) by best
hence ¬ SN(?R) unfolding SN defs by blast

With the auxiliary lemma

wfrstep trancl :
WF(R) =⇒ þ

+
R = {(x , y) | x →+

R y ∧ x ∈ T (F(R)) ∧ y ∈ T (F(R))}

86

7.2 Signature Extensions Preserve Termination

we obtain nontermination of þ
+
R and thus, using once more the fact that

termination of a relation is equivalent to termination of its transitive closure,
nontermination of þR.

hence ¬ SN(þ+
R) unfolding wfrstep trancl [OF True] .

with SN trancl SN conv show ?thesis by auto
qed

7.2.3 Putting It All Together

First note that the previous two lemmas can also be used to obtain the classical
completeness result of the dependency pair transformation.

Lemma 7.3 (Completeness of DP Transformation). If the TRS R is termi-
nating, then the initial DP problem is finite.

lemma DP complete:
assumes ichainmin (DP(R), ID(R)) s t σ shows ¬ SN(R)

proof −

Clearly, minimal infinite chains are infinite chains.

have chains:
ichainmin (DP(R), ID(R)) s t σ =⇒ ichain (DP(R), ID(R)) s t σ
by simp

By definition, we obtain that the signature of the initial DP problem is a subset
of](F(R)).

have Fun(DP(R), ID(R)) ⊆](F(R)) 〈proof omitted〉
from ichain imp clean ichain[OF this chains[OF assms]]

have ichain (DP(R), ID(R)) s t JσK](F(R)) .
from clean ichain imp not SN wfrstep[OF this] have ¬ SN(þR) .
thus ?thesis unfolding wfrstep def SN defs by blast

qed

The main result for TRSs, is the proof of Theorem 7.1.

lemma SN wfrstep SN rstep conv : SN(þR) = SN(R)

87

Chapter 7 Signature Extensions

proof − {

As already said before, the direction from right to left, follows immediately
from the definition of the well-formed rewriting relation.

assume ¬ SN(þR)
hence ¬ SN(R) unfolding SN defs wfrstep def by blast

} moreover {

For the direction from left to right, we do a case distinction on whether R is
well-formed or not.

assume ¬ SN(R)
have ¬ SN(þR)
proof (cases WF(R))

If it is not well-formed, then clearly þR is not terminating.

case False thus ?thesis by auto
next

Otherwise, the proof follows the described outline.

case True
have Fun(DP(R), ID(R)) ⊆](F(R)) 〈proof omitted〉
moreover from not SN imp min ichain[OF True 〈¬ SN(R)〉]

obtain s t σ where ichain (DP(R), ID(R)) s t σ by auto
ultimately have ichain (DP(R), ID(R)) s t JσK](F(R))

by (rule ichain imp clean ichain)
from clean ichain imp not SN wfrstep[OF this] show ?thesis .

qed
}

After showing (the contrapositives of) both directions, we obtain the desired
result.

ultimately show ?thesis by blast
qed

88

7.3 Signature Extensions and Finiteness

7.3 Signature Extensions and Finiteness

Since the DP framework is concerned with DP problems instead of TRSs,
we are also interested in how signature extensions affect the finiteness of DP
problems. To get more fine-grained results, we do not restrict to finiteness
alone, but consider also infinite chains that are not minimal.

We start by giving a negative result: cleaning may destroy minimal infinite
chains.

Example 7.1. Consider the DP problem (P,R), where P = {F(g(x, y)) →
F(g(x, y))} and R = {g(x, x)→ g(x, x)}. Then the sequences

s i = F(g(x, y))
t i = F(g(x, y))
σ i = {x/a, y/b}

constitute a minimal infinite chain, since g(a, b) is terminating with respect to
R. However, when cleaning the substitution we get Jσ iK = {x/z, y/z} and
g(z, z) is not terminating with respect to R. Hence, the chain is no longer
minimal.

It has been shown by Sternagel and Thiemann [39], Example 13 that there are
DP problems (originating from TRSs) admitting uncleaned minimal infinite
chains, but no cleaned minimal infinite chain. Hence, signature extensions do
in general not preserve finiteness of DP problems. In other words: restrict-
ing to just the function symbols occurring in a DP problem, allows to prove
termination of a nonterminating TRS!

Note that there is an alternative definition of ‘finiteness,’ where only infinite
chains (without the minimality condition) are considered. For this kind of
finiteness, Lemma 7.1 shows that signature extensions preserve finiteness.

However, the definition of finiteness as given in Definition 5.5 is highly desir-
able in practice, since it admits powerful processors like the subterm criterion
(Chapter 6), usable rules [12–14, 16, 46], and switching from full termination
to innermost termination [12]; all of which are not sound without minimality.
Thus, we are interested in conditions, under which signature extensions still

89

Chapter 7 Signature Extensions

preserve finiteness. Left-linearity of the second component of a DP problem, is
such a condition.

Definition 7.4 (Left-Linearity). A term is linear, if every single variable occurs
at most once. That is,

linear(Var x) = True
linear(Fun f ts) = (is partition [Var(t). t ← ts] ∧ (∀ t∈ts. linear(t)))

where is partition checks for a list of sets that they are mutually disjoint:

is partition xs = (∀ j<|xs|. ∀ i<j . xs i ∩ xs j = ∅)

A TRS is left-linear, if all its left-hand sides are linear.

left-linear(R) ≡ ∀ (l , r)∈R. linear(l)

Theorem 7.2. Signature extensions preserve finiteness of a DP problem (P, R),
if R is left-linear. Or in Isabelle:

[[Fun(P, R) ⊆ F ; left-linear(R); ichainmin (P, R) s t σ]]

=⇒ ichainmin (P, R) s t JσKF

Since the proof goes along the same lines as the proof of Lemma 7.1, we just
present the auxiliary lemmas that ensure that minimality does not get lost,
provided we have a left-linear R.

First we need to show that rewrite steps propagate ‘cleanness’ for left-linear
TRSs. (This is however only true, if we either have a well-formed TRS, or the
starting term is terminating.)

Lemma 7.4. Let R be a left-linear TRS, F a superset of the signature of R,
s and t terms, such that s is terminating with respect to R and there is an
R-step from JsKF to t. Then, there exists a term u, such that JuKF = t and s
rewrites to u.

lemma left linear SN elt clean term rstep:
assumes JsKF →R t and F(R) ⊆ F and SNR(s) and left-linear(R)
shows ∃ u. JuKF = t ∧ s →R u

We prove the lemma by induction over s. Here, arbitrary : t makes sure that
the induction hypothesis is generalized to arbitrary terms instead of t.

90

7.3 Signature Extensions and Finiteness

using 〈JsKF →R t 〉 and 〈SNR(s)〉 proof (induct s arbitrary : t)

If s would be a variable, then R would contain a rule with a variable left-hand
side. Hence s could not be terminating with respect to R.

case (Var x) thus ?case 〈proof omitted〉
next

case (Fun f ss)
note IH = this(1) and rstep = this(2)

From the induction hypothesis we obtain the two facts

IH : [[s ∈ ss; JsKF →R t ; SNR(s)]] =⇒ ∃ u. JuKF = t ∧ s →R u
rstep: JFun f ssKF →R t

show ?case

We do a case distinction on whether cleaning will replace the current term by
the fresh variable z, or not.

proof (cases (f , |ss|) ∈ F)

If JsKF is z, then the proof proceeds as for the Var -case.

case False show ?thesis 〈proof omitted〉
next

Otherwise, JsKF is of the form Fun f (map J·KF ss).

case True
with rstep have (Fun f (map J·KF ss)) →R t by simp
thus ?thesis

We continue by a case distinction on whether the rewrite step takes place at,
or below the root position.

proof (cases rule: rstep cases ′)
case (root l r σ)

Since (l , r) ∈ R and R is left-linear, we know that l is linear.

with 〈(l , r) ∈ R〉 and 〈left-linear(R)〉

91

Chapter 7 Signature Extensions

have linear(l) by (auto simp: left linear trs def)

Moreover, as a left-hand side of a rule, l is well-formed with respect to F .

moreover from 〈(l , r) ∈ R〉 and 〈F(R) ⊆ F 〉

have l ∈ T (F) using lhs wf by blast
moreover from True and〈lσ = Fun f (map J·KF ss)〉

have JFun f ssKF = lσ by simp

Using the lemma

linear clean subst :
[[linear(t); t ∈ T (F); JsKF = tσ]] =⇒ ∃ τ . Jτ |Var(t)KF = σ|Var(t) ∧ s = tτ

we obtain a substitution τ whose cleaned version coincides with σ for all vari-
ables of l.

ultimately obtain τ where clean tau: Jτ |Var(l)KF = σ|Var(l)
and s: Fun f ss = lτ
using linear clean subst [OF 〈linear(l)〉] by blast

The applied rule has to satisfy the variable condition, since otherwise Fun f ss
would not be terminating.

from 〈SNR(Fun f ss)〉
and rhs free vars imp rstep not SN [OF 〈(l , r) ∈ R〉]
have Var(r) ⊆ Var(l) unfolding s by best

Using this and several facts about substitutions (for example, the well-known
coincidence lemma), we are able to derive JrτKF = t. Thus, we may take rτ
as our desired u.

have JrτKF = Jrτ |Var(r)KF 〈proof omitted〉
also have . . . = Jrτ |Var(l)KF 〈proof omitted〉
also have . . . = rJτ |Var(l)KF 〈proof omitted〉
also have . . . = rσ|Var(l) unfolding clean tau ..
also have . . . = rσ|Var(r) 〈proof omitted〉
also have . . . = rσ 〈proof omitted〉
finally have JrτKF = t using 〈rσ = t 〉 by simp

92

7.3 Signature Extensions and Finiteness

moreover from 〈(l , r) ∈ R〉 have lτ →R rτ by best
ultimately show ?thesis unfolding s by auto

next

This leaves the case that the rewrite step takes place below the root.

case (nonroot g ss1 u ss2 v)

Let g be the root of t, u the argument of Fun f (map J·KF ss) that is reduced,
ss1 and ss2 the surrounding arguments, and v the result of rewriting u. Clearly,
the root of the term does not change. Further, u is the only argument that is
changed.

hence g = f and args: map J·KF ss = ss1 @ u # ss2 by auto

For convenience, we introduce the following abbreviations. Let ?i be the posi-
tion of the reduced argument, ?ss1 the arguments in front, ?ss2 the arguments
that follow, and ?C the context of the rewrite step.

let ?i = |ss1 |
let ?ss1 = take ?i ss
let ?ss2 = drop (Suc ?i) ss
let ?C = More f ?ss1 � ?ss2
from args have |map J·KF ss| = |ss1 @ u # ss2 | by auto
hence len: ?i < |ss| by auto
from args have (map J·KF ss)?i = (ss1 @ u # ss2)?i by auto
with len and 〈u →R v 〉 have step: Jss?iKF →R v by auto
from len have ss?i ∈ ss by auto

If the whole term is terminating, then the ?i -th argument is also terminating.

with SN imp SN arg [OF 〈SNR(Fun f ss)〉]
have SN : SNR(ss?i) by auto

from IH [OF nth mem[OF len] step SN] obtain w
where v : JwKF = v and arg step: ss?i →R w by auto

from id take nth drop[OF len]
have len ss: |(?ss1 @ ss?i # ?ss2)| = |ss| by simp

have JFun f (?ss1 @ w # ?ss2)KF =
Fun f (map J·KF ?ss1 @ v # map J·KF ?ss2)

93

Chapter 7 Signature Extensions

using True unfolding len ss[symmetric] v [symmetric] by simp
also have . . . = t 〈proof omitted〉
finally have JFun f (?ss1 @ w # ?ss2)KF = t .
moreover from arg step have ?C [ss?i] →R ?C [w] ..
ultimately show ?thesis

unfolding ctxt apply .simps
unfolding id take nth drop[OF len, symmetric] by best

qed
qed

qed

Now that we know that cleanness is propagated by rewriting (for left-linear
TRSs), we can show that cleaning a term preserves termination (with respect
to a left-linear TRS).

Lemma 7.5 (Cleaning Preserves Termination of Terms). Let t be a term that
is terminating with respect to R. Whenever we clean t with respect to some
superset of the signature of R, the resulting term is still terminating with
respect to R.

lemma left linear SN elt imp clean SN elt :
assumes left linear : left-linear(R) and subset : F(R) ⊆ F and SN : SNR(t)
shows SNR(JtKF)

using 〈SNR(t)〉 proof (rule contrapos pp)
assume ¬ SNR(JtKF)
then obtain s where s 0 = JtKF

and seq : ∀ i . (s i) →R (s (i+ 1)) by auto

We use the auxiliary function

S R f t s 0 = t
S R f t s (i+ 1) = (SOME u. S R f t s i →R u ∧ f u = s (i+ 1))

in order to construct a clean infinite sequence of R-steps. Here, SOME x . P x
is very similar to ∃ x . P x, only that instead of just True or False, SOME, will
return a specific witness, if possible, and is undefined, otherwise.

let ?s = S R J·KF t s
let ?P = λi u. (?s i) →R u ∧ JuKF = s (i+ 1)

94

7.3 Signature Extensions and Finiteness

have ∀ i . (?s i) →R (?s (i+ 1)) ∧ J?s (i+ 1)KF = s (i+ 1) ∧ SNR(?s i)
proof

fix i
show (?s i) →R (?s (i+ 1)) ∧ J?s (i+ 1)KF = s (i+ 1) ∧ SNR(?s i)
proof (induct i)

case 0
from seq have (s 0) →R (s (0 + 1)) by simp
hence JtKF →R (s (0 + 1)) by (simp add : 〈s 0 = JtKF 〉)
from left linear SN elt clean term rstep[OF this subset SN left linear]

have ∃ u. ?P 0 u by auto
from someI ex [OF this] have ?P 0 (?s (0 + 1)) by simp
with SN show ?case by simp

next
case (Suc i)
hence IH1 : (?s i) →R (?s (i+ 1))

and IH2 : J?s (i+ 1)KF = s (i+ 1)
and IH3 : SNR(?s i) by auto

from IH1 and IH3
have SN ′: SNR(?s (i+ 1)) by (rule step preserves SN elt)

from seq have (s (i+ 1)) →R (s ((i+ 1) + 1)) by simp
hence J?s (i+ 1)KF →R (s ((i+ 1) + 1)) unfolding IH2 .
from left linear SN elt clean term rstep[OF this subset SN ′ left linear]

have ∃ u. ?P (i+ 1) u by auto
from someI ex [OF this] have ?P (i+ 1) (?s ((i+ 1) + 1)) by simp
with SN ′ show ?case by simp

qed
qed
moreover have ?s 0 = t by simp
ultimately show ¬ SNR(t) by best

qed

Now, it is clear that the proof of Lemma 7.1 can be modified such that for left-
linear R, minimal infinite chains imply clean minimal infinite chains (since,
cleaning preserves termination). Thus, we have a proof of Theorem 7.2.

95

Chapter 7 Signature Extensions

7.4 Applications

The results about signature extensions are not only interesting from a theo-
retical point of view, but also important for some techniques that are used by
many termination tools. We give two examples:

1. The first is a special case of term rewriting, string rewriting, where we
restrict to TRSs that are built exclusively over unary function symbols
(so called string rewrite systems; SRSs). There are techniques that work
better/only for SRSs (to mention only two: arctic matrix interpretations
[22] and string reversal). In the soundness proofs of those techniques, we
rely on the fact that all function symbols are unary. We can do this, since
it is safe to restrict to the function symbols that are occurring inside a
system.

2. The second is a labeling transformation on TRSs or DP problems, root-
labeling. It will be discussed in detail in Chapter 8.

7.5 Chapter Notes

We have given an alternative proof of the fact that signature extensions preserve
the termination of TRSs. More importantly, this is the first mechanized proof
of that fact. There are modularity results, due to Middeldorp [27], implying
this fact. A shorter proof of the aforementioned modularity results was given by
Ohlebusch [30]. In [39] we hint, why those proofs are not easily mechanizable.
We further extended the results of the literature by investigating how signature
extensions affect (minimal) infinite chains. Here, we have shown that signature
extensions preserve finiteness of a DP problem, whenever the second component
of the DP problem is left-linear.

96

Chapter 8

Root-Labeling

Failure is the key to success;
each mistake teaches us something.

Morihei Ueshiba

Besides termination techniques (that either reduce the number of rules in a
problem or directly prove termination), there are also transformations which
produce a new TRS whose termination implies termination of the original
system (and which are hopefully easier to prove terminating). One of these
transformations is semantic labeling, which uses semantic information to label
different occurrences of function symbols in a TRS.

Example 8.1. Consider the following TRS, representing the factorial function
(where p denotes taking the predecessor of a Peano number):

fact(s(x))→ mul(fact(p(s(x))), s(x))
p(s(x))→ x

The intuitive meaning of the occurring function symbols is

fact(x) = x!
mul(x, y) = xy

p(x) = x− 1
s(x) = x+ 1

97

Chapter 8 Root-Labeling

If we now label fact by the value of its argument, we get infinitely many rules
of the form

facti+1(s(x))→ mul(facti(p(s(x))), s(x))

where i is the result of evaluating x (using the above interpretations). This
version of the TRS, can easily be proved terminating by an LPO.

This should illustrate that interpreting the function symbols of a TRS in the
“right way,” helps to prove termination. However, it is not at all trivial to find
the “right way.” That is, why we are interested in purely syntactic interpre-
tations. This leads us to root-labeling which is a specific instance of semantic
labeling, where the used interpretation is fixed by the syntactic structure of
the given system. In the following, we will first formally introduce semantic
labeling in its model version (that is, the used interpretation has to reflect
the actual rewrite rules, faithfully). Then, we will introduce root-labeling and
show that the model condition is not always satisfied. Finally, we show a way
to “preprocess” a TRS, such that the model condition is always satisfied.

8.1 Semantic Labeling

In this section, we recall the model version of semantic labeling. Usually,
algebras are used to interpret TRSs.

Definition 8.1 (Algebras and Models). An F-algebra A forR over some carrier
set A, is given by the interpretation functions

fA(x1, . . . , xn) : An → A

for every function symbol (f, n) ∈ F . A (variable) assignment is a mapping
α : V → A. This is extended to terms by

[α]A(t) =

{
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn),
α(t) otherwise

We say that A is a model of R, if [α]A(l) = [α]A(r), for every rule (l, r) ∈ R
and every assignment α.

98

8.1 Semantic Labeling

Definition 8.2 (Labelings). A labeling ` for A, consists of sets of labels Lf for
every f , together with mappings `f : An → Lf , for every (f, n) ∈ F with
Lf 6= ∅. Terms are labeled by

labα(x) = x

labα(f(t1, . . . , tn)) =

{
f(labα(t1), . . . , labα(tn)) if Lf = ∅,
fa(labα(t1), . . . , labα(tn)) otherwise

where a = `f ([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab, consists of the
rewrite rule labα(l) → labα(r), for every rule (l, r) ∈ R and assignment α :
V → A.

The model version of semantic labeling is as follows.

Theorem 8.1 (Zantema [52], Theorem 4). Let R be a TRS. Let the algebra
A be a non-empty model of R and let ` be a labeling for A. Then, R is
terminating if and only if Rlab is terminating.

Here, the fact that A needs to be a (non-empty) model of R, is called the model
condition. Consider the following example to see that this condition is really
necessary.

Example 8.2. Let R be a TRS consisting of the rules:

f(a)→ f(b)
b→ a

We interpret R over the Boolean algebra (where 1 + 1 = 0): fA(x) = x, a = 0,
and b = 1. For the labeling, we take Lf = {0, 1} and La = Lb = ∅, together
with the mapping `f(x) = x+ 1. Then, the labeled system is

f1(a)→ f0(b)
b→ a

having the single DP F1(a)→ B, and hence an empty dependency graph. Thus,
by dropping the model condition, we could prove termination of a nontermi-
nating TRS.

99

Chapter 8 Root-Labeling

Semantic labeling was formalized for IsaFoR by René Thiemann. Furthermore,
root-labeling is just an instance of semantic labeling. Hence, we do not give
the formalization and its proofs within this thesis. Instead, we concentrate on
the closure under flat contexts, which is the main obstacle for applying root-
labeling effectively. But more on this, after an introduction to root-labeling.

8.2 Plain Root-Labeling

As mentioned in the introduction, we avoid the challenge of finding an ap-
propriate carrier and suitable interpretation and labeling functions, by fixing
everything beforehand, depending on the syntactic structure of the given TRS.
Surely, this reduces the power of semantic labeling significantly, but we gain
automation of the method for free.

Definition 8.3 (Root-Labeling of TRSs). Let R be a TRS over the signature
F . Then, the algebra AF has the carrier F and interprets function symbols by
the mappings fAF (x1, . . . , xn) = f for all (f, n) ∈ F . For the labeling we take
Lf = Fn for every (f, n) ∈ F , together with the mappings `f (x1, . . . , xn) =
(x1, . . . , xn). (In words: every function symbol is interpreted by itself and we
label by the tuple (internally we use lists) resulting from the interpretations of
all arguments.) The labeled TRS is denoted by Rrl.

By Theorem 8.1, we know that whenever the interpretation functions of root-
labeling constitute a non-empty model of a TRSR (which is not necessarily the
case; cf. [35, Example 4]), thenRrl is terminating if and only ifR is terminating.
We defer the problem of making sure, that the used interpretation constitutes a
model to Section 8.4 and proceed by introducing root-labeling for DP problems.

8.3 Root-Labeling Processor

In order to benefit from the numerous termination techniques that are available
in the DP framework, we found it worthwhile to reformulate root-labeling as
a DP processor. Since, semantic labeling was already reformulated as a DP
processor, this is an easy task. We mainly apply the labeling to P and R
separately, in order to obtain the labeled DP problem (Prl,Rrl). However, for
the labeling of P we do not even need the model condition.

100

8.4 Closure Under Flat Contexts

Definition 8.4 (Root-Labeling of DP Problems). Let (P, R) be a DP problem.
By Fε<(P), we denote the function symbols in P that only occur below root
positions. Then, the algebra AG has the carrier G = F(R) ∪ Fε<(P) and
interprets function symbols as in Definition 8.3. For the labeling, we take
Lf = Gn if (f , n) ∈ G with n > 0, and Lf = ∅, otherwise (this means that
head symbols are not labeled). Now, the root-labeling processor just returns
(Prl,Rrl).

Recall that there is no model requirement for P. However, root-labeling is
only sound, when the used algebra forms a model of R. The real challenge
is to preprocess DP problems (and TRSs for that matter) in a way such that
root-labeling will always constitute a model of R. This is taken care of by the
so called closure under flat contexts.

8.4 Closure Under Flat Contexts

Since for root-labeling, every function symbol is interpreted by itself, the model
condition only depends on the root symbols of left-hand sides and right-hand
sides. Now, by wrapping all the rules where the root of the left-hand side and
the root of the right-hand side differ, inside an appropriate context, we can
ensure the model condition for arbitrary TRSs and DP problems.

Definition 8.5 (Flat Contexts). A context that contains exactly one function
symbol is called flat. For an n-ary function symbol f , the flat-context for the
i-th argument is given by:

FCiV(f) ≡ More f (take i V) � (drop (i+ 1) V)

where V is an n-element list of ‘fresh’ variables. The set of flat-contexts built
over the signature F is defined as follows:

FC(F) ≡
⋃

(f , n)∈F {FCifresh(n)(f) | i ∈ {0 ..<n}}

Here, by fresh(n), we denote a list of n ‘fresh’ variables and {0 ..<n}, is Is-
abelle’s notation for a set, containing all natural numbers less than n. By
freshness, we mean that those variables have not been used before (internally,
we just make sure that the variables are distinct from those, occurring in the
given DP problem).

101

Chapter 8 Root-Labeling

For some TRSs, the model condition is satisfied automatically, since for every
rule, the root of the left-hand side and the root of the right-hand side coincide.
For others this is not the case and we have to consider the rules which have
different root symbols (those are called root-altering rules and denoted by Ra)
for preprocessing.

Definition 8.6 (Closure Under Flat Contexts of TRSs). The closure under
flat contexts of a set of rules R, with respect to a signature F , is defined by:

FCF (R) ≡ (
⋃

(l , r)∈Ra {(C [l], C [r]) | C ∈ FC(F)}) ∪ (R − Ra)

Example 8.3. Recall the TRS of Example 5.1. The signature consists of the
symbols {(0, 0), (s, 1), (add, 2)}, resulting in the following set of flat contexts:

{s(�), add(�, x2), add(x1,�)}

Both rules are root-altering and hence need to be closed under flat contexts.
The resulting closed TRS consist of the six rules:

s(add(0, y))→ s(y)
s(add(s(x), y))→ s(s(add(x, y)))

add(add(0, y), x2)→ add(y, x2)
add(add(s(x), y), x2)→ add(s(add(x, y)), x2)

add(x1, add(0, y))→ add(x1, y)
add(x1, add(s(x), y))→ add(x1, s(add(x, y)))

Clearly, after closing a TRS under flat contexts, the model condition is always
satisfied. However, we need to make sure that the termination behavior of the
system is not disturbed.

For TRS, we have the following result:

Theorem 8.2. The closure under flat contexts for TRSs is termination preserv-
ing and reflecting. Or in Isabelle:

[[finite R; F(R) ⊆ F ; FC(F) 6= ∅]] =⇒ SN(R) = SN(FCF (R))

Note the side conditions: this only works for finite TRSs (meaning that we only
consider a finite number of rules), when considering at least all the function

102

8.4 Closure Under Flat Contexts

symbols of the signature of R, and when there is at least one flat context. The
finiteness of R is required in order to make sure that at most finitely many
variable names have already been used inside the TRS. This is a technical
precondition for internally used fresh name generators that allow a list (and
hence only a finite number) of names that have to be avoided. The condition
that the set of flat contexts is non-empty, implies that there has to be at
least one non-constant function symbol in the signature of R. Since systems,
consisting only of constants cannot be labeled, this is not a real restriction.

Hence, for TRSs, the closure under flat contexts followed by root-labeling, is a
sound and complete termination technique.

Next, we consider DP problems instead of TRSs. In [35, Lemmas 13 and
17], we claimed that the closure and flat contexts is sound for DP problems.
However, in both proofs (which where not formalized then), we have a “without
loss of generality,” where we unfortunately lose generality. This came to our
attention, when we formalized the closure under flat contexts in Isabelle. The
problem is that the operation depends on signature extensions (since otherwise,
we could not restrict the set of flat contexts to just those symbols, occurring in
the DP problem). As has been shown in Chapter 7, signature extensions are
only sound for left-linear R.

Before we rectify the wrongly stated theorem, we recall the definition of closing
DP problems under flat contexts.

Definition 8.7 (Closure Under Flat Contexts of DP Problems). For DP prob-
lems (P, R), we do not just close P and R under flat contexts, since this would
result in having function symbols of R at root positions in the closed P. In
order to preserve termination we need a trick (the problem are R-steps that
take place directly below sharp symbols). Consider the auxiliary function

block∆(Var x) = Var x
block∆(Fun f ts) = Fun f (map (λt . Fun ∆ [t]) ts)

which does insert the function symbol ∆, directly below the root at every
argument position. Now, the closure under flat contexts of (P, R), is defined
by

(block∆(P), FC{∆} ∪ F (R))

where block∆(P) = {(block∆(s), block∆(t)) | (s, t) ∈ P}, F is a superset of

103

Chapter 8 Root-Labeling

Fε<(P) ∪ F(R), and ∆ is assumed to be fresh with respect to the signature
of R.

Thus, for DP problems, we have the following result:

Theorem 8.3. Let (P, R) be a DP problem consisting of finitely many rules
and Fε<(P) ∪ F(R) ⊆ F . Whenever R is left-linear, then the processor
returning (block∆(P), FC{∆} ∪ F (R)) is sound.

We refrain from presenting the proof, since it is very technical. The main idea
is the same as in the paper-proof in [35]. The interested reader is referred to
the theory RootLabeling of IsaFoR.

8.5 Touzet’s SRS

The main example of [35] was an SRS, introduced by Touzet [44]:

bu→ bs sbs→ bt tb→ bs ts→ tt

sb→ bsss su→ ss tbs→ utb tu→ ut

In version 7.0.2 of the termination problem database (TPDB)1 this system has
the name TRS/Zantema 04/z090.xml. By using root-labeling in the DP frame-
work (and preceded by the closure under flat contexts, since labeling would not
be sound otherwise) we could generate the first (and still only) automatic ter-
mination proof of TRS/Zantema 04/z090.xml. Gladly, the system is left-linear
(since it is an SRS) and hence our formalization even yields an automatic cer-
tificate of its termination. The rather longish (over 5 MB) proof is to be found
at

http://cl-informatik.uibk.ac.at/software/ceta/z090.proof.xml

and can be automatically certified by version 1.15 of CeTA.

1http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz

104

http://cl-informatik.uibk.ac.at/software/ceta/z090.proof.xml
http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz

8.6 Chapter Notes

8.6 Chapter Notes

Semantic labeling was introduced by Zantema [52]. A very special version of
semantic labeling for string rewrite systems, due to Johannes Waldmann, in
which the semantic and labeling components are completely determined by
the system at hand, was first used by Waldmann [47] and Endrullis [10], in
the string rewriting division of the 2006 international termination competi-
tion2 with remarkable success. This special version—which was later called
root-labeling—was extended to TRSs and also formulated as a DP processor
by Sternagel and Middeldorp [35]. Actually, [35] introduces two different DP
processors for root-labeling. Our formalization corresponds to FC1 of [35].
During our formalization, we found an error in [35, Lemmas 13 and 17], which
was rectified and formalized in Isabelle by Sternagel and Thiemann [39].

2www.termination-portal.org/wiki/Termination_Competition

105

www.termination-portal.org/wiki/Termination_Competition

Chapter 9

Certification

Security, like correctness, is not an add-on feature.

Andrew Stuart Tanenbaum

Besides black art, there is only automation and
mechanization.

Federico Garćıa Lorca

Until now we have only dealt with the first stage of building a termination proof
checker as described in Chapter 1. Of this first stage, we have concentrated on
formalizing the mathematical theory that is used in termination proofs. Our
goal, however, is to certify for a given termination proof that it is correct.
Hence, for every technique that is used in such a proof, we need a way to check
for a correct application of this technique and additionally, we need to check
that all incorporated techniques are composed correctly. In the following, we
describe how we handle this task in IsaFoR/CeTA.

9.1 Proof Format

The first ingredient, is a general proof format, such that every termination
tool can generate termination proofs using this format and every termination
proof checker can certify (or reject) proofs in this format. For the certifica-
tion of termination proofs, the Certification Proof Format has been devel-
oped.1 This is an XML format that contains a description of a problem (TRS,

1http://cl-informatik.uibk.ac.at/software/cpf/

107

http://cl-informatik.uibk.ac.at/software/cpf/

Chapter 9 Certification

DP problem, etc.) together with a proof of some desired property (termina-
tion/nontermination, finiteness, etc.). The details are not important here. Just
note that there is such a format and that we have implemented parser combi-
nators in Isabelle that are able to transform this XML format into an Isabelle
data type for termination proofs.

We represent termination proofs of TRSs by the type (α, β, γ) TRSProof.
Here, α is the type of function symbols, β the type of labels, and γ the type of
variables. Further, for every termination technique that is supported by CeTA,
there is a constructor. We only present those constructors that represent one
of the techniques that where described in previous chapters. For TRSs, this
includes DPTrans for the DP transformation, Fcc for the closure under flat
contexts, and Rootlab for root-labeling.

For proofs inside the DP framework, we use the type (α, β, γ) DPProof. We
again have a constructor for every supported processor. For example, Sub-
termCriterionProc for the subterm criterion processor, FccProc for the closure
under flat contexts of DP problems, and RootlabProc for the root-labeling pro-
cessor.

9.2 Check Functions

The actual certification of a given termination proof is done as follows:

1. Translate the input into the internal data type (α, β, γ) TRSProof.

2. Call a check function that either succeeds, or otherwise fails, providing
an informative error message.

For the second step, every termination technique (for TRSs) and every proces-
sor (for DP problems), has its own check function. Then, the ‘global’ check
function for TRS proofs, merely calls the specific check functions according to
the structure of the given proof. In order to obtain readable error messages
on failure, our check functions have the result type ε check, which is an abbre-
viation for ε + unit, that is, every check function either returns unit (which
indicates success), or some value of type ε (which is then used to produce
an error message). In the following, we describe the check functions of some
termination techniques.

108

9.2 Check Functions

9.2.1 DP Transformation

Checking the correct application of the DP transformation, is done using the
function

check DP R P ≡ do {

check wf trs R;

check subseteq (DP list R)

P (λx . “the DP ” ·

shows rule x · “ does not appear in the DP problem” · shows nl)

} (λx . “the DP−transformation is not applied correctly .” · shows nl · x)

where check wf trs is a check function, guaranteeing that the given TRS is
well-formed and check subseteq checks whether all elements of its left argument
are also contained in its right argument (here, this guarantees that none of the
dependency pairs has been omitted; still, we allow for additional rules, as could
for example result from a weaker definition of dependency pairs). The function
DP list, computes the dependency pairs for a given list of rewrite rules (on this
level, we are using lists instead of sets, since our goal is to produce executable
functions). Note, that this function uses the so called do-notation as syntactic
sugar for monadic functions. The remaining constructs are for error messages:
· just concatenates messages, whereas modifies an error message (its right
argument) that is issued whenever its left argument fails.

Reasoning about the Error Monad.
Concerning ·, we are cheating a bit, since there are actually two different functions that
we both represented by · here. For efficiency reasons (that is, to avoid a quadratic time
complexity for the concatenation of error messages), we use the type shows (which is an
abbreviation for string ⇒ string) for error messages. This is similar to Haskell’s Show
type class. Then, there are two functions to modify messages. The first is op +#+
:: string ⇒ shows ⇒ shows, which is used to add a given string to an error message.
The second is op +@+ :: shows ⇒ shows ⇒ shows, and is use to concatenate two
error messages. Both are represented by · in the text.

The ASCII version of is op <+?.

The soundness of the DP transformation is expressed by the lemma

109

Chapter 9 Certification

[[isOK (check DP R P); finite(P, ID(R))]] =⇒ SN(R)

which constitutes the connection between the abstract formalization of the
DP transformation (where we use abstract mathematical concepts like sets,
quantifiers, etc.) and the concrete check function for given problems (using
lists and only functions that can be expressed as functional programs). For
completeness, we give the definition of the function isOK :

isOK m ≡ case m of Inl e ⇒ False | Inr x ⇒ True

9.2.2 Subterm Criterion

A correct application of the subterm criterion is checked via

check subterm criterion proc π rsteps P P ′ R (Some rm) = do {

forallm

(λ(l , r). do {

check no var l ;

check no var r ;

check no defined root rm r

})

P snd ;

forallm (check strict R rsteps π) (list diff P P ′) snd ;

forallm (check weak π) P ′ snd

}

Here, π is the projection function, rsteps is a representation of the concrete
rewrite sequences that are used for those rules which are in (B ∪ →R)+π, P
are the pairs of the given DP problem, P ′ are the remaining pairs (after the
application of the processor), and R are the rules of the given DP problem.
Further, rm is a rule map (of the rules in R) associating function symbols to
rules, defining them. This is used for efficiently checking whether some symbol
is defined with respect to R. The forallm function, applies a check function to

110

9.2 Check Functions

all elements of a list. On error, it does not only return an error message, but
also the element (together with its position in the list) which caused the error.
Since here, we are only interested in the message, we apply snd to the resulting
error. The check function proceeds as follows: First we compute the list of all
defined symbols of R. Then, we check for every pair in P that the left-hand
side, as well as the right-hand side is not a variable, and additionally that the
root of the right-hand side is not one of the defined symbols of R (ensuring the
first assumption of Theorem 6.4). Afterwards, we check that all the removed
rules (that is P − P ′) are in (B ∪ →R)+π (ensuring the second assumption
of Theorem 6.4). Finally, we check that all the remaining rules are equal after
applying the projection (ensuring the third assumption of Theorem 6.4).

The link to the abstract formalization is given by the lemma:

isOK

(check subterm criterion proc π rsteps P P ′ R

(computeRuleMap R)) =⇒

chain-id (P,R) (P ′,R)

That is, the remaining DP problem is chain-identifying with respect to the
original DP problem.

9.2.3 Closure Under Flat Contexts

Checking the correct application of the closure under flat contexts in the DP
framework, is a bit more involved. The termination tool has to provide a
fresh function symbol f and the list of all flat contexts fcs, in addition to the
incoming DP problem (P, R) well as the outgoing DP problem (P ′, R ′).

fcc proc P R f fcs P ′ R ′ = do {

let fa = (f , 0 + 1);

let Cf = More f [] � [];

let fcs ′ = Cf # fcs;

let vs = vars trs list R;

111

Chapter 9 Certification

let fs = list union (funas below trs list P) (funas trs list R);

let fas = fa # fs;

let ds = defs list (map trsI remove lab R);

check (¬ member ds (remove lab f , 1))

(shows (remove lab f) · “ is not fresh” · shows nl);

check left linear trs R;

check wf trs R;

forallm

(λr . do {

check no var (fst r);

check no var (snd r);

check no defined root defs ds (remove lab term (snd r))

})

P snd ;

forallm (check flat ctxt vs) fcs ′ snd ;

forallm (check is flat ctxt vs fas) fcs ′ snd ;

forallm (check flat ctxt complete fcs ′) fas snd ;

forallm (check rule preserving fcs ′ R ′) R snd ;

forallm (check rule reflecting fcs ′ R) R ′ snd ;

check superset of blocked f P ′ P

}

In an initial phase, the check function computes several auxiliary values: the
defined function symbols of R, a unary function symbol fa (corresponding to
∆ from the abstract formalization), a ‘unary’ flat context Cf, an extended
list of flat context fcs ′, the variables of R, all the function symbols that do
not occur at the roots of left-hand sides or right-hand sides in P, and finally,

112

9.3 Code-Extraction

the list of function symbols that have to be considered when constructing flat
contexts fas. Subsequently, we check that fa is fresh with respect to Fε<(P)
∪ F(R) and that it is not defined in R. Then, we check that R is left-linear
and well-formed. For P all the left-hand sides and right-hand sides have to be
non-variable terms and the right-hand sides must not be defined in R. The
next three checks, essentially make sure that the set fcs ′ really contains flat
contexts and that it contains all of them. Finally, we check that R ′ and P ′ do
not lack any rules.

Again, we have formalized the soundness of the flat context closure processor:

[[isOK (fcc proc P R ∆ fcs P ′ R ′); finite(P ′, R ′)]] =⇒ finite(P, R)

Note that the closure under flat contexts is not chain-identifying (and hence
unlabeling is forbidden afterwards). The problem is that the infinite chain is
modified by cleaning and by inserting function symbols directly below the root.
Thus, we loose the tight connection that is needed for chain-identifyingness.

9.3 Code-Extraction

In a similar way, the individual check functions of the separate termination
techniques are all linked to our abstract formalizations. In contrast to the
abstract mathematical results, however, the functions are not at all different
from usual functions in functional programming languages (that is, everything
is executable). In contrast to most functions that are used in programs, we
have formally proven that our check functions are correct. Further, there is a
“main” function that manages an initially given proof and recursively calls the
corresponding check functions to verify the application of every occurring ter-
mination technique or DP processor. Now we can use Isabelle’s code-generation
facilities, in order to extract code for a specific programming language (for ex-
ample, Haskell, StandardML, or OCaml). The result, is a fully verified program
(CeTA) that can efficiently check a given termination proof.

113

Chapter 9 Certification

9.4 Chapter Notes

In this chapter, we have shown, how we use our abstract formalizations on the
termination of rewriting, in order to certify given termination proofs. This
is achieved by proving properties of check functions, which are suitable for
code-generation.

A detailed account of code-generation in Isabelle is given by Haftmann [15].

114

Chapter 10

Conclusion

You know a conjurer gets no credit when once he has
explained his trick; and if I show you too much of my

method of working, you will come to the conclusion
that I am a very ordinary individual after all.

Sherlock Holmes
A Study in Scarlet

In the last few chapters, we have given an overview of our most prominent
contributions to IsaFoR/CeTA. The basic idea was to formalize facts about ter-
mination, as well as check functions that certify the correct application of these
facts in specific proofs. This was done using Isabelle/HOL (IsaFoR). Then, we
used code-extraction to obtain an efficient proof checker for termination proofs
of term rewrite systems (CeTA).

We started by giving a brief introduction to interactive theorem proving (using
Isabelle/HOL) in Chapter 2. Then, we presented our underlying formaliza-
tions of abstract rewriting as well as term rewriting in Chapters 3 and 4. The
remainder of the thesis was mostly concerned with specific termination tech-
niques. Switching from termination of term rewrite systems to finiteness of
dependency pair problems was the topic of Chapter 5. This was followed by
a formalization of the (generalized) subterm criterion—a simple, yet powerful
processor for the dependency pair framework—in Chapter 6. As a prerequisite
for later formalizations, we then made a short digression on the effect of signa-
ture extensions for termination of rewriting and finiteness of dependency pair
problems, in Chapter 7. Afterwards, in Chapter 8, we discussed a crucial ingre-
dient of root-labeling: the closure under flat contexts. Finally, in Chapter 9,
we gave an overview on how our abstract formalizations are linked to check

115

Chapter 10 Conclusion

functions for concrete applications of termination techniques in IsaFoR. Those
check functions were then used to obtain the efficient proof checker CeTA, a
program to certify the correctness of a given termination proof.

As already mentioned in the introduction, I just picked those parts of IsaFoR
for my presentation that were mainly realized by myself. For completeness,
we now give a list of techniques that can be certified by the current version of
CeTA (which is 1.15):

• For termination those are: dependency pair transformation; dependency
graph processor (EDG???); reduction pair processors in several variants;
polynomial interpretations over naturals, rationals, arctic numbers, and
over matrices of all these domains; lexicographic path order; usable rules;
subterm criterion; semantic labeling; closure under flat contexts; root-
labeling; size-change termination; and string reversal. (Recently, also
support for relative termination has been added.)

• For nontermination those are: loops; non-well-formed term rewrite sys-
tems; string reversal; rule removal; and dependency pair transformation.

Before we present related work, we list IsaFoR/CeTA relevant publications: Ster-
nagel and Thiemann [36, 37, 38, 39], Sternagel et al. [40], Thiemann and Ster-
nagel [43], and Zankl et al. [51].

10.1 Related Work

We are aware of two other projects that concentrate on certifying termination
proofs of term rewrite systems:

• Coccinelle/CiME: As part of the A3PAT project,1 Coccinelle is a Coq2

library on rewriting and CiME (Alt-Ergo) a tool, which (among other
things) generates Coq proofs from given termination proofs, using the
formalizations of Coccinelle. The A3PAT team came up with the gener-
alized subterm criterion. More details on Coccinelle/CiME may be found
in Contejean et al. [6, 7] and Courtieu et al. [8].

1http://a3pat.ensiie.fr
2http://coq.inria.fr

116

http://a3pat.ensiie.fr
http://coq.inria.fr

10.2 Applications and Future Work

• CoLoR/Rainbow: Here, CoLoR3 is a Coq library on rewriting and Rain-
bow a program that generates Coq proofs from given termination proofs,
using the formalizations of CoLoR. A distinctive feature of CoLoR is a for-
malization of the first- and higher-order recursive path ordering. Many
details related to CoLoR/Rainbow have been given by Blanqui and Ko-
prowski [4], Blanqui et al. [5], Koprowski [20, 21], and Koprowski and
Zantema [23].

In both of the above approaches, a given termination proof is handled in two
stages: first the proof is used as a recipe for generating a Coq script (using the
respective libraries Coccinelle or CoLoR) that certifies termination of the given
problem. Then, Coq is run on those scripts to check their correctness. The
main difference to IsaFoR/CeTA, is that CeTA directly checks the correctness
of a given proof (instead of generating a theory, to be run through Isabelle).
This allows for graceful error handling. That is, CeTA gives informative error
messages (using notions from rewriting), whereas in the other two approaches,
Coq just fails with some internal error, if the generated Coq script cannot
be handled. Furthermore, CeTA is code-generated and hence runs as binary
program. Running a generated Coq script, is comparatively slow.

10.2 Applications and Future Work

Aside from the obvious application of certifying termination proofs of term
rewrite systems, we designed the basic layer of IsaFoR in a way that it should
be appropriate for other formalizations about rewriting. For example, we are
planning to tackle termination under specific strategies. Furthermore, there is
a new project on certification of confluence of term rewrite systems that will
be based on IsaFoR. Another direction of research (that has already started),
is to tighten the connection between Isabelle/HOL and CeTA, such that Is-
abelle/HOL functions may be proven terminating using CeTA.

3http://color.inria.fr

117

http://color.inria.fr

Chapter 10 Conclusion

proofs # supported # certificates
SRS Relative 33 (31 %) 18 (55 %) 18 (55 %)
SRS Standard 220 (76 %) 184 (84 %) 184 (84 %)
TRS Relative 15 (75 %) 14 (93 %) 11 (73 %)
TRS Standard 375 (89 %) 282 (75 %) 281 (75 %)

Table 10.1: Termination Competition 2010

10.3 Assessment

In order to get an impression of the current state-of-the-art in the automatic
certification of termination proofs, we shortly present some results from the
most recent international termination competition (which was conducted in
July 2010).4 There have been four categories for which we can in principle cer-
tify proofs: SRS Relative (containing 105 problems), SRS Standard (contain-
ing 289 problems), TRS Relative (containing 20 problems), and TRS Standard
(containing 423 problems). In the certifying counterpart of all four of those
categories, CeTA made the first place. Note that in the two relative categories,
CeTA has been the only participant and unfortunately, not even all of the exist-
ing certifiers took part in the competition. However, the outcome would most
certainly have been the same. In Table 10.1 we give a more detailed overview
of CeTA’s results. In the column ‘# proofs’ we give the number of successful
proofs (that is, some termination tool answering either YES or NO). Here,
the percentage is computed with respect to the total number of problems in
the corresponding category. The column ‘# supported’ gives the number of
successful proofs that where produced by termination tools, when restricted to
just those techniques that are supported by at least one of the certifiers. Here
and in the last column, the percentage is computed with respect to the first
column. Finally, ‘# certificates’ gives the number of proofs that have been
accepted by CeTA.

It can be seen that for the standard categories, the gap between ‘automatically
provable’ and ‘automatically provable and certifiable’, is less then 25 %. Note
that without CeTA, that is, only considering the results of the second participant
cime3verifier, the percentages would have been: 21 % for SRS Standard and

4http://termcomp.uibk.ac.at

118

http://termcomp.uibk.ac.at

10.3 Assessment

42 % for TRS Standard certificates (corresponding to the last column of the
above table).

119

Appendix A

Auxiliary Proofs

Most of the proofs that we have given in previous chapters rely on some auxil-
iary results. In cases, where those results are too lengthy or do not add to the
understanding of a proof, we moved those auxiliary lemmas into the appendix.
The following proofs are subdivided corresponding to the chapters for which
they provide results.

A.1 General

If the range of an infinite sequence is finite, then there exists an element that
occurs infinitely often.

lemma finite range:
fixes f ::nat ⇒ α
assumes finite (range f) shows ∃ x . ∃∞i . f i = x

proof (rule ccontr)
assume ¬(∃ x . ∃∞i . f i = x)
hence ∀ x . ∃ j . ∀ i>j . f i 6= x unfolding INFM nat by blast
from choice[OF this] obtain j where neq : ∀ x . ∀ i>j x . f i 6= x ..
from finite range imageI [OF assms]

have finite (range (j ◦ f)) by (simp add : comp def)
from finite nat bounded [OF this] obtain m

where range (j ◦ f) ⊆ {..<m} ..
hence j (f m) < m by (auto simp: comp def)
with neq have f m 6= f m by auto
thus False by simp

qed

121

Appendix A Auxiliary Proofs

A.2 Abstract Rewriting

If we have an infinite sequence over the union of two ARSs, such that the first
element of our sequence is terminating with respect to the second ARS, then,
after a (possibly empty) finite sequence of steps in the second ARS, we will
finally reach a step in the first ARS.

lemma union iseq SN elt imp first step:
assumes ∀ i . (S i , S (i+ 1)) ∈ (A ∪ B) and SNB(S 0)
shows ∃ i . (S i , S (i+ 1)) ∈ A
∧ (∀ j<i . (S j , S (j + 1)) ∈ B ∧ (S j , S (j + 1)) /∈ A)

proof −
from 〈SNB(S 0)〉 obtain i where (S i , S (i+ 1)) /∈ B by blast
with assms have (S i , S (i+ 1)) ∈ A (is ?P i) by auto
let ?i = Least ?P
from 〈?P i 〉 have ?P ?i by (rule LeastI)
have ∀ j< ?i . (S j , S (j + 1)) /∈ A using not less Least by auto
moreover with assms have ∀ j< ?i . (S j , S (j + 1)) ∈ B by best
ultimately have ∀ j< ?i . (S j , S (j + 1)) ∈ B − A by best
with 〈?P ?i 〉 show ?thesis by best

qed

If we have an infinite sequence in some ARS, then every element of the sequence
is connected to every later element of the sequence, by finitely many steps in
the ARS.

lemma steps imp seq :
fixes i j ::nat
assumes ∀ i . (S i , S (i+ 1)) ∈ A and j ≥ i shows (S i , S j) ∈ A∗

using 〈j ≥ i 〉 proof (induct j)
case 0 thus ?case by simp

next
case (Suc j)
show ?case
proof (cases i = (j + 1))

case True show ?thesis by (simp add : True)
next

case False

122

A.3 Term Rewriting

with Suc have (S i , S j) ∈ A∗ by simp
moreover from assms have (S j , S (j + 1)) ∈ A∗ by auto
ultimately show ?thesis by simp

qed
qed

A.3 Term Rewriting

If there is a non-root rewrite step between to terms s and t, there is an argu-
ment such that rewriting affects only this argument and leaves all the other
arguments unchanged.

lemma nrrstep args:
assumes s >ε→R t
shows ∃ f ss ts. s = Fun f ss ∧ t = Fun f ts ∧ |ss| = |ts|
∧ (∃ j<|ss|. ss j →R ts j ∧ (∀ i<|ss|. i 6= j −→ ss i = ts i))

proof −
from assms obtain l r C σ where (l , r) ∈ R and C 6= �

and s: s = C [lσ] and t : t = C [rσ] unfolding nrrstep def ′ by best
from 〈C 6= �〉 obtain f ss1 D ss2 where C : C = More f ss1 D ss2

by (induct C) auto
have s = Fun f (ss1 @ D [lσ] # ss2) (is = Fun f ?ss) by (simp add : s C)
moreover have t = Fun f (ss1 @ D [rσ] # ss2) (is = Fun f ?ts)

by (simp add : t C)
moreover have |?ss| = |?ts| by simp
moreover

have ∃ j<|?ss|. ?ss j →R ?ts j ∧ (∀ i<|?ss|. i 6= j −→ ?ss i = ?ts i)
proof −

let ?j = |ss1 |
have ?j < |?ss| by simp
moreover have ?ss?j →R ?ts?j
proof −

from 〈(l , r) ∈ R〉 have D [lσ] →R D [rσ] by auto
thus ?thesis by auto

qed
moreover have ∀ i<|?ss|. i 6= ?j −→ ?ss i = ?ts i

123

Appendix A Auxiliary Proofs

(is ∀ i<|?ss|. −→ ?P i)
proof (intro allI impI)

fix i assume i < |?ss| and i 6= ?j
hence i < |ss1 | ∨ i > |ss1 | by auto
thus ?P i
proof

assume i < |ss1 | thus ?P i by (auto simp: nth append)
next

assume i > |ss1 | thus ?P i
using 〈i < |?ss|〉 by (auto simp: nth Cons ′ nth append)

qed
qed
ultimately show ?thesis by best

qed
ultimately show ?thesis by auto

qed

If a term is minimally nonterminating, then it is terminating with respect to
non-root rewrite steps.

lemma Tinf imp SN elt nrrstep:
assumes t ∈ T ∞R shows SN>ε→R

(t)
proof (rule ccontr)

assume ¬ SN>ε→R
(t)

then obtain S where t = S 0 and nrseq : ∀ i . (S i) >ε→R (S (i+1)) by auto
hence ∀ i . ∃ f ss ts. S i = Fun f ss ∧ S (i+ 1) = Fun f ts ∧ |ss| = |ts|
∧ (∃ j<|ss|. ss j →R ts j ∧ (∀ k<|ss|. k 6= j −→ ssk = tsk))

(is ∀ i . ∃ f ss ts. ?P i f ss ts) using nrrstep args by fast
from choice[OF this] obtain f where ∀ i . ∃ ss ts. ?P i (f i) ss ts by best
from choice[OF this] obtain ss where ∀ i . ∃ ts. ?P i (f i) (ss i) ts by best
from choice[OF this] obtain ts where P : ∀ i . ?P i (f i) (ss i) (ts i) by best
moreover have ∀ i . f i = f (Suc i) ∧ ts i = ss (i+ 1)
proof

fix i
from P have S (i+ 1) = Fun (f (i+ 1)) (ss (i+ 1)) by simp
moreover from P have S (i+ 1) = Fun (f i) (ts i) by blast+

124

A.3 Term Rewriting

ultimately show f i = f (i+ 1) ∧ ts i = ss (i+ 1) by simp
qed
ultimately have ∀ i . ?P i (f i) (ss i) (ss (i+ 1)) by auto
hence ∀ i . |ss i | = |ss (i+ 1)|

and ∀ i . ∃ j<|ss i |. (ss i)j →R (ss (i+ 1))j

∧ (∀ k<|ss i |. k 6= j −→ (ss i)k = (ss (i+ 1))k) by blast+
from choice[OF this(2)] obtain π

where pi : ∀ i . π i<|ss i | ∧ (ss i)(π i) →R (ss (i+ 1))(π i)
∧ (∀ k<|ss i |. k 6= π i −→ (ss i)k = (ss (i+ 1))k) by blast+

hence seq : ∀ i . (ss i)(π i) →R (ss (i+ 1))(π i) by simp
have len: ∀ i . |ss i | = |ss 0 |
proof

fix i show |ss i | = |ss 0 |
proof (induct i)

case 0 show ?case ..
next

case (Suc i) thus ?case using 〈∀ i . |ss i | = |ss (i+ 1)|〉 by simp
qed

qed
have ∀ i . π i < |ss 0 |
proof

fix i
have |ss i | = |ss 0 | using len by simp
moreover from pi have π i < |ss i | by simp
ultimately show π i < |ss 0 | by simp

qed
hence range π ⊆ {i . i < |ss 0 |} by auto
moreover have finite {i . i < |ss 0 |} by simp
ultimately have finite (range π) by (rule finite subset)
from finite range[OF this] obtain j

where j : ∀ i . ∃ k≥i . π k = j by (auto simp: INFM nat le)
from choice[OF this] obtain q where q : ∀ i . q i ≥ i ∧ π (q i) = j by auto
have j len: ∀ i . j < |ss i |
proof

fix i
from j obtain k where k ≥ i and π k = j by best
moreover from pi have π k < |ss k | by simp

125

Appendix A Auxiliary Proofs

ultimately have j < |ss k | by simp
moreover from len have |ss k | = |ss 0 | by simp
moreover from len have |ss i | = |ss 0 | by simp
ultimately show j < |ss i | by simp

qed
from seq

have step: ∀ i . (ss (q i))(π (q i)) →R (ss ((q i) + 1))(π (q i)) by simp
have refl seq : ∀ i . (ss i)j →=

R (ss (i+ 1))j

proof
fix i show (ss i)j →=

R (ss (i+ 1))j

proof (cases π i = j)
assume π i = j
moreover from pi have (ss i)(π i) →R (ss (i+ 1))(π i) by simp
ultimately show ?thesis by simp

next
assume π i 6= j
moreover from 〈∀ i . j < |ss i |〉 have j < |ss i | ..
moreover from pi

have j < |ss i | ∧ j 6= π i −→ (ss i)j = (ss (i+ 1))j by simp
ultimately show ?thesis by simp

qed
qed
let ?s = λi . (ss (shift by q i))j

have ∀ i . (ss i)j →+
R (ss ((q i) + 1))j

proof
fix i
from q have q i ≥ i by simp
from steps imp seq [OF refl seq this] have (ss i)j →∗R (ss (q i))j by simp
moreover from step

have (ss (q i))j →R (ss ((q i) + 1))j by (simp add : q)
ultimately show (ss i)j →+

R (ss ((q i) + 1))j by simp
qed
hence ∀ i . (?s i) →+

R (?s (i+ 1)) by simp
hence ¬ SNR((?s 0)) using SN elt imp SN elt trancl by best
moreover have ?s 0 C t
proof −

from P have t : t = Fun (f 0) (ss 0) by (simp add : 〈t = S 0 〉)

126

A.4 Subterm Criterion

have j < |ss 0 | using j len by simp
hence ?s 0 ∈ ss 0 by simp
thus ?thesis unfolding t ..

qed
moreover from assms have ∀ sCt . SNR(s) unfolding Tinf def by simp
ultimately show False by simp

qed

A.4 Subterm Criterion

Projections are of type α ⇒ nat. A projection π is lifted to terms as follows:

π (Var x) = Var x
π (Fun f ts) = (if π f < |ts| then tsπ f else Fun f ts)

Reasoning about Projections.
Internally, we use proj term π t to project the term t, using the projection π. But for
readability, this function is dropped in the output.

Every subterm of a terminating term, is itself terminating.

lemma subterm preserves SN :
assumes SN : SNR(t) and supt : (t , s) ∈ B
shows SNR(s)

proof −
from supt have t D s unfolding supt def suptp iff supteqp neq by simp
thus ?thesis using SN imp SN subt [OF SN , of s] by simp

qed

If we have a rewrite step in a well-formed TRS, from a term s whose root is a
constructor, to a term t, then after projecting, either, both terms are equal, or
there is still a rewrite step between the projected terms.

lemma rstep proj term:
assumes (root(s), num args s) /∈ DR and WF(R) and s →R t
shows (π s) →=

R (π t)
proof −

127

Appendix A Auxiliary Proofs

from rstep imp Fun[OF 〈WF(R)〉 〈s →R t 〉]
obtain f ss where s: s = Fun f ss by best

from 〈s →R t 〉 have (Fun f ss) →R t by (simp add : s)
with 〈WF(R)〉 show ?thesis
proof (cases rule: rstep cases Fun ′)

case (root ls r σ)
hence (root(s), num args s) ∈ DR by (auto simp: s defined def)
with 〈(root(s), num args s) /∈ DR〉 show ?thesis ..

next
case (nonroot i u)
let ?ss1 = take i ss
let ?ss2 = drop (Suc i) ss
let ?C = More f ?ss1 � ?ss2
let ?ss = ?ss1 @ u # ?ss2
show ?thesis
proof (cases π f = i)

case True
have proj s: π s = ss i using True nonroot by (simp add : s)
from nth append take[of i ss u] and 〈i < |ss|〉

have proj t : π t = u unfolding nonroot using True by simp
from 〈(ss i) →R u〉 show ?thesis unfolding proj s proj t ..

next
case False show ?thesis
proof (cases π f < i)

case True
with nonroot have π f < |ss| by simp
hence proj s: π s = ssπ f by (simp add : s)
from True and 〈π f < |ss|〉 have π f < |?ss1 | by simp
hence π t = ?ss1π f

unfolding nonroot
using nth append [of ?ss1 π f] by auto

with nth take[OF True, of ss]
have proj t : π t = ssπ f by simp

show ?thesis unfolding proj s proj t by simp
next

case False
with 〈π f 6= i 〉 have π f > i by simp

128

A.4 Subterm Criterion

show ?thesis
proof (cases π f < |ss|)

case False
hence proj s: π s = s unfolding s by simp
from nonroot have |?ss| = |ss| by simp
with False have ¬ π f < |?ss| by simp
hence proj t : π t = t unfolding nonroot by simp
from 〈s →R t 〉 show ?thesis unfolding proj s proj t ..

next
case True
hence π f ≤ |ss| by simp
from 〈i < |ss|〉 have i ≤ |ss| by simp
from nth append take drop is nth conv [OF 〈π f ≤ |ss|〉
〈i ≤ |ss|〉 〈π f 6= i 〉]
have ?ssπ f = ssπ f .

hence proj s: π s = ssπ f
and proj t : π t = ssπ f
using 〈π f < |ss|〉 by (simp all add : nonroot s)

show ?thesis unfolding proj s proj t by simp
qed

qed
qed

qed
qed

If a term is terminating with respect to a TRS, then it is still terminating,
when allowing proper subterm steps in addition to rewrite steps.

lemma SN elt rstep imp SN elt supt union rstep:
assumes SNR(t)
shows SN(B ∪ →R)(t) (is SN?S(t))

proof (rule ccontr)
assume ¬ SN?S(t)
then obtain s where ini : s 0 = t and seq : ∀ i . (s i , s (i+ 1)) ∈ ?S

unfolding SN defs by auto
have SN : ∀ i . SNR(s i)
proof

129

Appendix A Auxiliary Proofs

fix i show SNR(s i)
proof (induct i)

case 0 show ?case using assms unfolding 〈s 0 = t 〉 .
next

case (Suc i)
from seq have (s i , s (i+ 1)) ∈ ?S by simp
thus ?case
proof

assume (s i , s (i+ 1)) ∈ B
from subterm preserves SN [OF Suc this] show ?thesis .

next
assume (s i) →R (s (i+ 1))
from step preserves SN elt [OF this Suc] show ?thesis .

qed
qed

qed
have no seq : ¬ (∃S . ∀ i . (S i , S (i+ 1)) ∈ SN rel supt (→R))

using SN SN rel supt rstep unfolding SN defs by auto
have ∀ i . (s i , s (i+ 1)) ∈ SN rel supt (→R)
proof

fix i
from SN have SN : SNR((s i)) by simp
from seq have (s i , s (i+ 1)) ∈ B ∪ →R by simp
thus (s i , s (i+ 1)) ∈ SN rel supt (→R)

unfolding SN rel supt def SN rel def using SN by auto
qed
with no seq show False by auto

qed

We define the restriction of a TRS R to only those rules that are well-formed
(that is, no variable as left-hand side and all variables in the right-hand side
do also occur in the left-hand side) as follows:

wf rules R ≡ {(l , r) | (l , r) ∈ R ∧ l /∈ V ∧ Var(r) ⊆ Var(l)}

If there is a rewrite step from a terminating term, then the same step is still
possible when considering just those rules of the TRS that satisfy the variable

130

A.4 Subterm Criterion

conditions.

lemma SN elt imp rstep wf rules:
assumes SNR(s) and s →R t shows s →wf rules R t

using 〈s →R t 〉 proof
fix l r C σ assume (l , r) ∈ R and s: s = C [lσ] and t : t = C [rσ]
show ?thesis
proof (cases (l , r) ∈ wf rules R)

case True thus ?thesis by (auto simp: s t)
next

case False
with 〈(l , r) ∈ R〉 have is var l ∨ (∃ x . x ∈ Var(r) − Var(l))

by (auto simp: wf rules def wf rule def)
thus ?thesis
proof

assume is var l
then obtain x where l : l = Var x by auto
let ?σ = {x/r}
let ?S = λi . C [(Var x)(?σi)σ]
have ?S 0 = s by (simp add : s l)
moreover have ∀ i . (?S i) →R (?S (i+ 1))
proof

fix i
from rstep.ctxt [OF rstep.subst [OF rstep.id [OF 〈(l , r) ∈ R〉],

of (?σi) ◦σ], of C]
show (?S i) →R (?S (i+ 1)) by (simp add : l subst def)

qed
ultimately have ¬ SNR(s) unfolding SN defs by best
with assms show ?thesis by simp

next
assume ∃ x . x ∈ Var(r) − Var(l)
then obtain x where x ∈ Var(r) − Var(l)

and empty : Var(l) ∩ {x} = ∅ by auto
hence r D Var x by (induct r) auto
then obtain D where r : r = D [Var x] by (rule supteqp ctxt E)
let ?σ = {x/l}
let ?S = λi . C [((D?σ)i)[l]σ]

131

Appendix A Auxiliary Proofs

from subst apply id ′[OF empty , of ?σ]
have l : l?σ = l by simp

have ?S 0 = s by (simp add : s)
moreover have ∀ i . (?S i) →R (?S (i+ 1))
proof

fix i
from rstepI [OF 〈(l , r) ∈ R〉, of (D?σ)i ?σ]

have ((D?σ)i)[l] →R (((D?σ)i) ◦ ((D?σ)(0 + 1)))[l?σ]
unfolding r l subst apply term ctxt apply distrib
by (simp add : subst def)

from rstep.ctxt [OF rstep.subst [OF this], of C σ]
show (?S i) →R (?S (i+ 1))
unfolding ctxt power compose distr [symmetric] by (simp add : l)

qed
ultimately have ¬ SNR(s) unfolding SN defs by best
with assms show ?thesis by simp

qed
qed

qed

A rewrite sequence starting at a terminating term, is still possible when restrict-
ing to only those rules of the used TRS that satisfy the variable conditions.

lemma SN elt imp rsteps wf rules:
assumes s →∗R t and SNR(s) shows s →∗wf rules R t

using 〈s →∗R t 〉 proof (induct)
case base show ?case ..

next
case (step u v)
from steps preserve SN elt [OF 〈s →∗R u〉 〈SNR(s)〉]

have SNR(u) .
from SN elt imp rstep wf rules[OF this 〈u →R v 〉]

have u →wf rules R v .
with 〈s →∗wf rules R u〉 show ?case ..

qed

Consider a rewrite step from a terminating term s to some term t. When

132

A.4 Subterm Criterion

projecting the terms, they either become equal, or there is still a rewrite step
between the projected terms.

lemma SN elt rstep proj term:
assumes SNR(s) and (root(s), num args s) /∈ DR and s →R t
shows (π s) →=

R (π t)
proof −

from assms have undef : (root(s), num args s) /∈ Dwf rules R
unfolding defined def wf rules def by auto

from SN elt imp rstep wf rules[OF 〈SNR(s)〉 〈s →R t 〉]
have s →wf rules R t .

from rstep proj term[OF undef wf trs wf rules this]
show ?thesis by blast

qed

Rewrite sequences, starting at terminating terms with constructors as roots,
are preserved by projections.

lemma SN elt rsteps proj term:
assumes s →∗R t and SNR(s) and (root(s), num args s) /∈ DR
shows (π s) →∗R (π t)

proof −
from assms have undef : (root(s), num args s) /∈ Dwf rules R

unfolding defined def wf rules def by auto
from SN elt imp rsteps wf rules[OF 〈s →∗R t 〉 〈SNR(s)〉]

have s →∗wf rules R t .
from rsteps proj term[OF this undef wf trs wf rules, of π]

show ?thesis
proof (induct)

case base thus ?case ..
next

case (step u v)
with rstep wf rules subset [of R] have u →R v by blast
with 〈(π s) →∗R u〉 show ?case ..

qed
qed

133

Appendix A Auxiliary Proofs

A.5 Signature Extensions

If there is a rewrite step between the two terms s and t, then cleaning either
turns them equal, or there is still a rewrite step between the cleaned terms.

lemma rstep imp clean rstep or Id :
assumes F(R) ⊆ F and s →R t
shows JsKF →=

R JtKF
proof −

from 〈s →R t 〉 obtain C σ l r
where (l , r) ∈ R and s: s = C [lσ] and t : t = C [rσ] ..

from s t show ?thesis
proof (induct C arbitrary : s t)

case Hole
let ?c = λσ. case σ of Subst s ⇒ Subst (J·KF ◦ s)
from clean subst apply term[OF lhs wf [OF 〈(l , r) ∈ R〉 〈F(R) ⊆ F 〉]]

have s: JsKF = l(?c σ) by (cases σ) (simp all add : Hole)
from clean subst apply term[OF rhs wf [OF 〈(l , r) ∈ R〉 〈F(R) ⊆ F 〉]]

have t : JtKF = r(?c σ) by (cases σ) (simp all add : Hole)
from 〈(l , r) ∈ R〉 show ?case unfolding s t by auto

next
case (More f ss1 D ss2)
hence IH : JD [lσ]KF →=

R JD [rσ]KF by simp
show ?case
proof (cases (f , |ss1 @ ss2|+ 1) ∈ F)

case False
with More have JsKF = z by simp
moreover from False and More have JtKF = z by simp
ultimately show ?thesis by auto

next
case True
let ?s = JD [lσ]KF
let ?t = JD [rσ]KF
from IH show ?thesis
proof

assume (?s, ?t) ∈ Id with True and More show ?thesis by auto
next

134

A.5 Signature Extensions

let ?C = More f (map J·KF ss1) � (map J·KF ss2)
assume ?s →R ?t
from rstep.ctxt [OF this, of ?C] and True

have JsKF →R JtKF by (simp add : More)
thus ?thesis ..

qed
qed

qed
qed

Cleaning preserves rewrite sequences.

lemma rsteps imp clean rsteps:
assumes F(R) ⊆ F and s →∗R t
shows JsKF →∗R JtKF

using 〈s →∗R t 〉 proof (induct rule: rtrancl induct)
case base show ?case by simp

next
case (step u v)
from rstep imp clean rstep or Id [OF 〈F(R) ⊆ F 〉 〈u →R v 〉]

have JuKF →=
R JvKF .

thus ?case using step by auto
qed

135

Appendix B

Publications

For completeness and since not all of my publications that originated during my
PhD studies are directly connected to this thesis (and hence not referenced),
here is a list of all my publications (in order of appearance).

• Christian Sternagel and Aart Middeldorp. Root-Labeling. In Andrei
Voronkov, editor, Rewriting Techniques and Applications, RTA 2008, vol-
ume 5117 of Lecture Notes in Computer Science, pages 336–350. Springer,
2008.
DOI 10.1007/978-3-540-70590-1_23.

• Christian Sternagel, René Thiemann, Sarah Winkler, and Harald Zankl.
CeTA - A Tool for Certified Termination Analysis. In Workshop on Ter-
mination, WST 2009, 2009.

• Christian Sternagel and René Thiemann. Loops under Strategies. In Ralf
Treinen, editor, Rewriting Techniques and Applications, RTA 2009, vol-
ume 5595 of Lecture Notes in Computer Science, pages 17–31. Springer,
2009.
DOI 10.1007/978-3-642-02348-4_2.

• Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp.
Tyrolean Termination Tool 2. In Ralf Treinen, editor, Rewriting Tech-
niques and Applications, RTA 2009, volume 5595 of Lecture Notes in
Computer Science, pages 295–304. Springer, 2009.
DOI 10.1007/978-3-642-02348-4_21.

137

http://dx.doi.org/10.1007/978-3-540-70590-1_23
http://dx.doi.org/10.1007/978-3-642-02348-4_2
http://dx.doi.org/10.1007/978-3-642-02348-4_21

Appendix B Publications

• Harald Zankl, Christian Sternagel, and Aart Middeldorp. Transforming
SAT into Termination of Rewriting. In Moreno Falaschi, editor, Work-
shop on Functional and (Constraint) Logic Programming, WFLP 2008,
volume 246 of Electronic Notes in Theoretical Computer Science, pages
199–214. Elsevier B.V., 2009.
DOI 10.1016/j.entcs.2009.07.023.

• René Thiemann and Christian Sternagel. Certification of Termination
Proofs using CeTA. In Stefan Berghofer et al., editors, Theorem Proving
in Higher Order Logics, TPHOLs 2009, volume 5674 of Lecture Notes in
Computer Science, pages 452–468. Springer, 2009.
DOI 10.1007/978-3-642-03359-9_31.

• Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middel-
dorp. Finding and Certifying Loops. In Jan van Leeuwen et al., editors,
Theory and Practice of Computer Science, SOFSEM 2010, volume 5901
of Lecture Notes in Computer Science, pages 755–766. Springer, 2010.
DOI 10.1007/978-3-642-11266-9_63.

• Christian Sternagel and René Thiemann. Abstract Rewriting. In Gerwin
Klein et al., editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/Abstract-Rewriting.shtml, June 2010.
Formal proof development.

• Christian Sternagel and René Thiemann. Executable Matrix Operations
on Matrices of Arbitrary Dimensions. In Gerwin Klein et al., editors,
The Archive of Formal Proofs.
http://afp.sf.net/entries/Matrix.shtml, June 2010. Formal proof
development.

• Christian Sternagel and René Thiemann. Certified Subterm Criterion
and Certified Usable Rules. In Christopher Lynch, editor, Rewriting
Techniques and Applications, RTA 2010, volume 6 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 325–340. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2010.
DOI dx.doi.org/10.4230/LIPIcs.RTA.2010.325.

• René Thiemann, Jürgen Giesl, Peter Schneider-Kamp, and Christian
Sternagel. Loops under Strategies . . . Continued. In International Work-

138

http://dx.doi.org/10.1016/j.entcs.2009.07.023
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-11266-9_63
http://afp.sf.net/entries/Abstract-Rewriting.shtml
http://afp.sf.net/entries/Matrix.shtml
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.325

shop on Strategies in Rewriting, Proving, and Programming, IWS 2010,
2010.

• Christian Sternagel and René Thiemann. Certification extends Termina-
tion Techniques. In Workshop on Termination, WST 2010, 2010.

• Christian Sternagel and René Thiemann. Signature Extensions Pre-
serve Termination - An Alternative Proof via Dependency Pairs. In
Anuj Dawar and Helmut Veith, editors, Computer Science Logic, CSL
2010, volume 6247 of Lecture Notes in Computer Science, pages 514–528.
Springer, 2010. to appear

139

Bibliography

[1] Thomas Arts and Jürgen Giesl. Termination of term rewriting using de-
pendency pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.
DOI 10.1016/S0304-3975(99)00207-8.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, August 1999. ISBN 0-521-77920-0.

[3] Marc Bezem and Thierry Coquand. Newman’s lemma - a case study in
proof automation and geometric logic. Bulletin of the EATCS, 79:86–100,
2003.

[4] Frédéric Blanqui and Adam Koprowski. Automated verification of termi-
nation certificates. Technical Report 6949, INRIA, June 2009.
http://www-rocq.inria.fr/~blanqui/papers/rr09color.pdf.

[5] Frédéric Blanqui, Solange Coupte-Grimal, William Delobel, Sébastien
Hinderer, and Adam Koprowski. CoLoR, a Coq library on rewriting and
termination. In Alfons Geser and Harald Søndergaard, editors, Proceed-
ings of the 8th International Workshop on Termination, WST 2006, pages
69–73, 2006.

[6] Évelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and
Xavier Urbain. Certification of automated termination proofs. In Boris
Konev and Frank Wolter, editors, Frontiers of Combining Systems, FroCos
2007, volume 4720 of Lecture Notes in Computer Science, pages 148–162.
Springer, 2007.
DOI 10.1007/978-3-540-74621-8_10.

[7] Évelyne Contejean, Andrei Paskevich, Xavier Urbain, Pierre Courtieu,
Olivier Pons, and Julien Forest. A3PAT, an approach for certified
automated termination proofs. In John Patrick Gallagher and Janis

141

http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://www-rocq.inria.fr/~blanqui/papers/rr09color.pdf
http://dx.doi.org/10.1007/978-3-540-74621-8_10

Bibliography

Voigtländer, editors, ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 2010, pages 63–72. ACM New York,
NY, USA, 2010.
DOI 10.1145/1706356.1706370.

[8] Pierre Courtieu, Julien Forest, and Xavier Urbain. Certifying a termina-
tion criterion based on graphs, without graphs. In Otmane Ait Mohamed,
César Muñoz, and Sofiéne Tahar, editors, Theorem Proving in Higher Or-
der Logics, TPHOLs 2008, volume 5170 of Lecture Notes in Computer
Science, pages 182–198. Springer, 2008.
DOI 10.1007/978-3-540-71067-7_17.

[9] Nachum Dershowitz. Termination dependencies. In Albert Rubio, edi-
tor, Proceedings of the 6th International Workshop on Termination, WST
2003, pages 27–30, 2003.

[10] Jörg Endrullis. Jambox, 2005.
http://joerg.endrullis.de.

[11] André Luiz Galdino and Mauricio Ayala-Rincón. A formalization of New-
man’s and Yokouchi’s lemmas in a higher-order language. Journal of For-
malized Reasoning, 1(1):39–50, 2008.

[12] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The depen-
dency pair framework: Combining techniques for automated termination
proofs. In Franz Baader and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, LPAR 2004, volume 3452 of
Lecture Notes in Computer Science, pages 301–331. Springer, 2005.
DOI 10.1007/b106931.

[13] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and
disproving termination of higher-order functions. In Bernhard Gramlich,
editor, Frontiers of Combining Systems, FroCos 2005, volume 3717 of
Lecture Notes in Computer Science, pages 216–231. Springer, 2005.
DOI 10.1007/11559306_12.

[14] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Mechanizing and improving dependency pairs. Journal of Automated Rea-
soning, 37(3):155–203, 2006.
DOI 10.1007/s10817-006-9057-7.

142

http://dx.doi.org/10.1145/1706356.1706370
http://dx.doi.org/10.1007/978-3-540-71067-7_17
http://joerg.endrullis.de
http://dx.doi.org/10.1007/b106931
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/s10817-006-9057-7

Bibliography

[15] Florian Haftmann. Code generation from Isabelle/HOL theories, June
2010.

[16] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair
method. In Franz Baader, editor, Automated Deduction, CADE 2003,
pages 32–46. Springer, 2003.
DOI 10.1145/978-3-540-45085-6_4.

[17] Nao Hirokawa and Aart Middeldorp. Dependency pairs revisited. In Vin-
cent van Oostrom, editor, Rewriting Techniques and Applications, RTA
2004, volume 3091 of Lecture Notes in Computer Science, pages 249–268.
Springer, 2004.
DOI 10.1007/b98160.

[18] Nao Hirokawa and Aart Middeldorp. Tyrolean termination tool: Tech-
niques and features. Information and Computation, 205(4):474–511, 2007.
DOI 10.1016/j.ic.2006.08.010.

[19] Gérard P. Huet. Residual theory in λ-calculus: A formal development.
Journal of Functional Programming, 4(3):371–394, 1994.
DOI 10.1017/S0956796800001106.

[20] Adam Koprowski. Termination of Rewriting and Its Certification. PhD
thesis, Technische Universiteit Eindhoven, 2008.

[21] Adam Koprowski. Coq formalization of the higher-order recursive path
ordering. Applicable Algebra in Engineering, Communication and Com-
puting, 20(5-6):379–425, 2009.
DOI 10.1007/s00200-009-0105-5.

[22] Adam Koprowski and Johannes Waldmann. Arctic termination . . . below
zero. In Andrei Voronkov, editor, Rewriting Techniques and Applications,
RTA 2008, pages 202–216. Springer, 2008.
DOI 10.1007/978-3-540-70590-1_14.

[23] Adam Koprowski and Hans Zantema. Certification of proving termination
of term rewriting by matrix interpretations. In Viliam Geffert, Juhani
Karhumäki, Alberto Bertoni, Bart Preneel, Pavol Návrat, and Mária
Bieliková, editors, Current Trends in Theory and Practice of Computer

143

http://dx.doi.org/10.1145/978-3-540-45085-6_4
http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1016/j.ic.2006.08.010
hhtp://dx.doi.org/10.1017/S0956796800001106
http://dx.doi.org/10.1007/s00200-009-0105-5
http://dx.doi.org/10.1007/978-3-540-70590-1_14

Bibliography

Science, SOFSEM 2008, volume 4910 of Lecture Notes in Computer Sci-
ence, pages 328–339. Springer, 2008.
DOI 10.1007/978-3-540-77566-9.

[24] Alexander Krauss. Certified size-change termination. In Frank Pfenning,
editor, Automated Deduction, CADE 2007, volume 4603 of Lecture Notes
in Computer Science, pages 460–475. Springer, 2007.
DOI 10.1007/978-3-540-73595-3_34.

[25] Alexander Krauss. Automating Recursive Definitions and Termina-
tion Proofs in Higher-Order Logic. PhD thesis, Technische Universität
München, Institut für Informatik, 2009.

[26] Donald MacKenzie. Mechanizing Proof. MIT Press, March 2004. ISBN
978-0-262-63295-9. Paperback.

[27] Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD
thesis, Vrije Universiteit, Amsterdam, 1990.

[28] Tobias Nipkow. Structured proofs in Isar/HOL. In Herman Geuvers and
Freek Wiedijk, editors, Types for Proofs and Programs, TYPES 2002, vol-
ume 2646 of Lecture Notes in Computer Science, pages 259–278. Springer,
2003.
DOI 10.1007/3-540-39185-1_15.

[29] Tobias Nipkow, Lawrence Charles Paulson, and Makarius Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of
Lecture Notes in Computer Science. Springer, 2002. ISBN 978-3-540-
43376-7. It is strongly recommended to download its updated version,
which is part of the documentation of the latest Isabelle release.
DOI 10.1007/3-540-45949-9.

[30] Enno Ohlebusch. A simple proof of sufficient conditions for the termination
of the disjoint union of term rewriting systems. Bulletin of the EATCS,
50:223–228, 1993.

[31] Lawrence Charles Paulson. The foundation of a generic theorem prover.
Journal of Automated Reasoning, 5(3):363–397, September 1989.
DOI 10.1007/BF00248324.

144

http://dx.doi.org/10.1007/978-3-540-77566-9
http://dx.doi.org/10.1007/978-3-540-73595-3_34
http://dx.doi.org/10.1007/3-540-39185-1_15
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/BF00248324

Bibliography

[32] Ole Rasmussen. The Church-Rosser theorem in Isabelle: A proof porting
experiment. Technical Report UCAM-CL-TR-364, University of Cam-
bridge, March 1995.

[33] José-Luis Ruiz-Reina, José-Antonio Alonso, Maŕıa-José Hidalgo, and
Francisco-Jesús Mart́ın-Mateos. Formalizing rewriting in the ACL2 the-
orem prover. In John A. Campbell and Eugenio Roanes-Lozano, editors,
Artificial Intelligence and Symbolic Computation, AISC 2000, volume 1930
of Lecture Notes in Computer Science, pages 92–106. Springer, 2000.
DOI 10.1007/3-540-44990-6_7.

[34] Natarajan Shankar. A mechanical proof of the Church-Rosser theorem.
Journal of the ACM, 35(3):475–522, 1988.
DOI 10.1145/44483.44484.

[35] Christian Sternagel and Aart Middeldorp. Root-Labeling. In Andrei
Voronkov, editor, Rewriting Techniques and Applications, RTA 2008, vol-
ume 5117 of Lecture Notes in Computer Science, pages 336–350. Springer,
2008.
DOI 10.1007/978-3-540-70590-1_23.

[36] Christian Sternagel and René Thiemann. Abstract Rewriting. In
Gerwin Klein, Tobias Nipkow, and Lawrence Charles Paulson, ed-
itors, The Archive of Formal Proofs. http://afp.sf.net/entries/
Abstract-Rewriting.shtml, June 2010. Formal proof development.

[37] Christian Sternagel and René Thiemann. Executable Matrix Operations
on Matrices of Arbitrary Dimensions. In Gerwin Klein, Tobias Nipkow,
and Lawrence Charles Paulson, editors, The Archive of Formal Proofs.
http://afp.sf.net/entries/Matrix.shtml, June 2010. Formal proof
development.

[38] Christian Sternagel and René Thiemann. Certified subterm criterion and
certified usable rules. In Christopher Lynch, editor, Rewriting Techniques
and Applications, RTA 2010, volume 6 of Leibniz International Proceedings
in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.
DOI 10.4230/LIPIcs.RTA.2010.325.

[39] Christian Sternagel and René Thiemann. Signature extensions preserve
termination - an alternative proof via dependency pairs. In Anuj Dawar

145

http://dx.doi.org/10.1007/3-540-44990-6_7
http://dx.doi.org/10.1145/44483.44484
http://dx.doi.org/10.1007/978-3-540-70590-1_23
http://afp.sf.net/entries/Abstract-Rewriting.shtml
http://afp.sf.net/entries/Abstract-Rewriting.shtml
http://afp.sf.net/entries/Matrix.shtml
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.325

Bibliography

and Helmut Veith, editors, EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2010, volume 6247 of Lecture Notes in Computer Science,
pages 514–528. Springer, 2010. to appear.

[40] Christian Sternagel, René Thiemann, Sarah Winkler, and Harald Zankl.
CeTA - a tool for certified termination analysis. In Proceedings of the 10th
International Workshop on Termination, WST 2009, 2009.

[41] Terese. Term Rewriting Systems. Cambridge University Press, 2003. ISBN
0-521-39115-6.

[42] René Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD thesis, Rheinisch-Westfälische Technische Hochschule
Aachen, Department of Computer Science, 2007.

[43] René Thiemann and Christian Sternagel. Certification of termination
proofs using CeTA. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,
TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science, pages
452–468. Springer, 2009.
DOI 10.1007/978-3-642-03359-9_31.

[44] Hélène Touzet. A complex example of a simplifying rewrite system. In
Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel, editors, Inter-
national Colloquium on Automata, Languages and Programming, ICALP
1998, volume 1443 of Lecture Notes in Computer Science, pages 507–517.
Springer, 1998.
DOI 10.1007/BFb0055035.

[45] Alan Mathison Turing. On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London Mathematical
Society, s2-42(1):230–265, December 1937.
DOI 10.1112/plms/s2-42.1.230.

[46] Xavier Urbain. Modular and incremental automated termination proofs.
Journal of Automated Reasoning, 32(4):315–355, 2004.
DOI 10.1007/BF03177743.

146

http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/BFb0055035
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1007/BF03177743

Bibliography

[47] Johannes Waldmann. Matchbox: A tool for match-bounded string rewrit-
ing. In Vincent van Oostrom, editor, Rewriting Techniques and Appli-
cations, RTA 2004, volume 3091 of Lecture Notes in Computer Science,
pages 85–94. Springer, 2004.
DOI 10.1007/b98160.

[48] Makarius Wenzel. Isabelle/Isar - A Versatile Environment for Human-
Readable Formal Proof Documents. PhD thesis, Technische Universität
München, Institut für Informatik, 2002.

[49] Makarius Wenzel. The Isabelle/Isar Implementation, December 2009.

[50] Makarius Wenzel. The Isabelle/Isar Reference Manual, December 2009.

[51] Harald Zankl, Christian Sternagel, Dieter Hofbauer, and Aart Middeldorp.
Finding and certifying loops. In Jan van Leeuwen, Anca Muscholl, David
Peleg, Jaroslav Pokorný, and Bernhard Rumpe, editors, Current Trends
in Theory and Practice of Computer Science, SOFSEM 2010, volume 5901
of Lecture Notes in Computer Science, pages 755–766. Springer, 2010.
DOI 10.1007/978-3-642-11266-9_63.

[52] Hans Zantema. Termination of term rewriting by semantic labelling. Fun-
damenta Informaticae, 24(1/2):89–105, 1995.

147

http://dx.doi.org/10.1007/b98160
http://dx.doi.org/10.1007/978-3-642-11266-9_63

Index

Page numbers of definitions (of concepts) and proofs (of lemmas) are printed
bold.

!, see nth constant∧
, see meta-level universal quantifi-

cation
#, see Cons constructor
](R), see sharped signature
×, see tuple type
tσ, see applying substitutions to terms
→R, see rewrite relation
ε→R, see root rewrite relation
>ε→R, see non-root rewrite relation
C [t], see applying contexts to terms
R∗, see reflexive closure
R+, see transitive closure
xsn, see nth constant
Cσ, see applying substitutions to

contexts
A↓, see joinability of ARSs
::, see typing constraint
=, see equality
≡, see meta-level equality
=⇒, see meta-level implication
⇒, see function type
þR, see well-formed rewrite rela-

tion
@, see append constant
∀ , see universal quantification

C(F), see well-formed contexts
CR(A), see confluence of ARSs
CRA(a), see confluence of elements
f ∈ DR, see defined function sym-

bols
DG(R), see dependency graph
DP(R), see dependency pairs
∃ , see existential quantification
F(R), see signatures of TRSs
FCF (R), see flat contexts
FCiV(f), see flat contexts
False, see logical absurdity
Fε<(P), see non-root symbols
Fun(t), see function symbols of terms
Fun(P, R), see signatures of DP

problems
H(P,R), see head symbols
ID(R), 58
Rrl, see root-labeling
SN(A), see termination of ARSs
SN(R), see termination of TRSs
SN(þR), see termination of well-

formed rewrite relation
SNA(a), see termination of elements
T (F), see well-formed terms

149

Index

T ∞R , see minimally nonterminating
terms

True, see logical truth
t ∈ V, see variable terms
t /∈ V, see non-variable terms
Var(t), see variables of terms
WCR(A), see local confluence of ARSs
WCRA(a), see local confluence of el-

ements
WF(R), see well-formed TRSs
[], see Nil constructor
[α]A(t), see interpretation of terms
∧, see logical conjunction
block∆(t), see blocked terms
block∆(P), see blocked TRSs
chain-id, see chain-identifyingness
⊆, 67
JtKF , see clean terms
finite, see finite DP problems
�, see Hole data type constructor
ichain, see infinite chain
ichainmin, see minimal infinite chain
−→, see logical implication
labα(t), see labeling of terms
left-linear(R), see left-linearity
|xs|, see length constant
linear(t), see linear terms
¬, see logical negation
◦, see composition
∨, see logical disjunction
root(t), see root constant
t], see sharp constant
sound, see sound DP processors
B, see proper subterm relation
D, see subterm relation

abstract rewrite system, 25

algebras, 98
ARS, see abstract rewrite system
automated reasoning, 9

blocking terms, 103
blocking TRSs, 103

certification, 107
chain-identifyingness, 67
chains

identifying, 67
infinite, 59
minimal infinite, 60

Church-Rosser, see confluence
clean terms, 81
code-extraction, see code-generation
code-generation, 113
composition

of contexts, 42
of relations, 26
of substitutions, 43

confluence
of ARSs, 28
of elements, 28

constants
append, 17
args, 38
drop, 18
fst, 15
length, 17
nth, 18
num args, 38
plain, 57
root, 37
set, 18
sharp, 57
shift, 67

150

Index

shift by, 32
snd, 15
sqr, 14
sqrsum, 14
take, 18
the, 16

contexts, 41
applying to terms, 41
composition of, 42
flat, 101
well-formed, 80

data type constructors
0, 16
Cons, 17
Fun, 36
Hole, 41
More, 41
Nil, 17
None, 16
Pair, 15
Plain, 57
Sharp, 57
Some, 16
Subst, 43
Suc, 16
Var, 36

dependency graph, 64
dependency pairs, 58
DP framework, 49
DP problems, 59

chain-identifying, 67
finite, 60

DP processors, 61
sound, 61

DPs, see dependency pairs

equality, 12

finiteness
of DP problems, 60

flat contexts, 101
function symbols

constructors, 40
defined, 40
of terms, 38
root, 37

head symbols, 101
HOL, see higher-order logic

Isabelle/HOL lemmas
allI, 12, 13, 53, 123
choice, 32, 69, 84, 121, 124
comp def, 121
disjE, 11
finite nat bounded, 121
finite range imageI, 121
finite subset, 124
impI, 12, 13, 53, 123
INFM nat, 121
INFM nat le, 124
LeastI, 122
list .exhaust, 17
list .induct, 17
nat .exhaust, 16
nat .induct, 16
not less Least, 122
nth append, 123, 127
nth Cons ′, 123
nth take, 127
rel comp def, 26

IsaFoR lemmas
comp rtrancl trancl, 32
CR E, 28

151

Index

CR elt E, 28
CR elt I, 28
CR I, 28
ctxt exhaust rev, 42
ctxt .exhaust, 42
ctxt .induct, 42
defined def, 127
finite range, 121, 124
iseq imp steps, 32, 71
Newman, 29
non strict ending, 31
not SN imp subt Tinf, 51
not wf trs imp not SN rstep, 47
nrrstep args, 123
nrrstep def ′, 123
nth append take, 127
nth append take drop is nth conv,

127
rstep cases, 45
rstep cases Fun ′, 45, 127
rstep cases ′, 45, 91
rstep imp clean rstep or Id, 134,

135
rstep imp Fun, 127
rstep induct, 45
rstep proj term, 127
rstep.ctxt, 45
rstep.id, 45
rstep.subst, 45
rstepE, 45
rstepI, 45
rsteps imp clean rsteps, 135
SN defs, 26
SN E, 26
SN E ′, 26
SN elt E, 26
SN elt I, 26

SN elt imp rstep wf rules, 131
SN elt imp rsteps wf rules, 132
SN elt imp SN elt trancl, 32, 124
SN elt rstep imp SN elt supt union rstep,

129
SN elt rstep proj term, 133
SN elt rsteps proj term, 133
SN I, 26
SN I ′, 26
SN iff wf, 26
SN imp SN subt, 127
SN induct, 26
SN rel def, 129
SN rel supt def, 129
SN SN rel supt rstep, 129
step preserves SN elt, 129
steps imp seq, 123
subst apply id ′, 131
subst apply term ctxt apply distrib,

131
subst def, 44
subst empty def, 44
subterm criterion proc sound, 68
subterm induct, 43
subterm preserves SN, 127
supt def, 127
suptp iff supteqp neq, 127
supteqp ctxt E, 131
suptp supteqp trans, 51
term induct, 37
term.exhaust, 37
Tinf def, 50
Tinf imp SN elt nrrstep, 52, 124
union iseq SN elt imp first step,

52, 122
WCR E, 28
WCR elt E, 28

152

Index

WCR elt I, 28
WCR I, 28
wf rule def, 131
wf rules def, 131

Isar attributes
OF, 19
of, 19
unfolded, 19

Isar proof commands
., 20
.., 12, 20
moreover, 21
obtain, 22
ultimately, 21
using, 20
apply, 13
assumes, 12
by, 15
done, 13
fix, 12
have, 12
lemma, 12
proof, 12
qed, 12
shows, 12
thus, 12
with, 12

Isar proof methods
assumption, 13
best, 32
erule, 13
induct, 15
intro, 12
simp, 32
simp all, 15

Isar specification elements
definition, 14

fun, 14

joinability
of ARSs, 28

labeling, 99
left-linearity, 90
local confluence

of ARSs, 28
of elements, 28

logic
higher-order, 11, 22
meta, 22
object, 10

logical absurdity, 12
logical connectives

conjunction, 12
disjunction, 12
implication, 12
negation, 12

logical truth, 12

meta-level equality, 10
meta-level implication, 10
meta-level universal quantification,

10
minimally nonterminating terms, 50
models, 98

Newman’s Lemma, 28
non-root symbols, 101
non-variable terms, 38

projections, 66
simple, 65

proof
mechanized, 22
of termination, 22

153

Index

proof checking, 9

quantifiers
existential, 12
universal, 12

reflexive closure, 26, 45
rewrite relation, 44

non-root, 45
root, 45
well-formed, 81

rewrite system
abstract, 25
blocked, 103
term, 39

root symbols, 37
root-labeling

plain, 100
processor, 101

semantic labeling, 99
signature extensions, 79
signatures, 39

extensions, 79
of DP problems, 82
of TRSs, 39
sharped, 82

soundness
of DP processors, 61

strong normalization, see termina-
tion

substitutions, 43
applying to contexts, 44
applying to terms, 43
composition of, 43

subterm criterion, 64
generalized, 66
generalized processor, 67

processor, 65
soundness, 67

subterm relation, 42
proper, 42

subterms, 42

term rewrite system, 39
termination, 22

of ARSs, 26
of elements, 26
of TRSs, 45
of well-formed rewrite relation,

81
terms

blocked, 103
interpretation of, 98
labeling of, 99
linear, 90
minimally nonterminating, 50
well-formed, 80

theorem proving
automated, 9
interactive, 9

transitive closure, 26, 45
TRS, see term rewrite system
types

ctxt, 41
dpp, 59
functions, 10
list, 17
nat, 16
option, 16
rule, 39
shp, 57
subst, 43
term, 36
trs, 39

154

Index

tuples, 15
typing constraint, 10

variable terms, 38
variables

of terms, 38

Weak Church-Rosser, see local con-
fluence

well-formedness
of contexts, 80
of terms, 80
of TRSs, 39

155

	Preface
	Introduction
	Contributions
	Overview
	Terminology
	Using Isabelle/IsaFoR
	Chapter Notes

	Isabelle/HOL
	 Isabelle - A Generic Theorem Prover
	 Higher-Order Logic
	Logic
	Functional Programming

	Common Data Types and Functions
	Tuples
	Natural Numbers
	Options
	Lists

	Combining and Modifying Facts
	Some Isar Idioms
	Chapter Notes

	Abstract Rewriting
	Abstract Rewriting in Isabelle
	Newman's Lemma
	Non-Strict Ending
	Chapter Notes

	Term Rewriting
	First-Order Terms
	Auxiliary Functions on Terms

	Term Rewrite Systems
	Contexts
	Subterms
	Substitutions
	Rewrite Relation
	Chapter Notes

	Dependency Pair Framework
	Minimal Counterexamples
	Dependency Pairs
	Termination of TRSs using Dependency Pairs

	Finiteness and Processors
	Chapter Notes

	Subterm Criterion
	Original Version
	Subterm Criterion Processor
	Generalized Subterm Criterion
	Generalized Subterm Criterion Processor
	Soundness

	Practicability
	Identity Mappings
	Rewrite Steps

	Chapter Notes

	Signature Extensions
	Well-Formed Terms
	Signature Extensions Preserve Termination
	Cleaning Preserves Infinite Chains
	DP Transformation for Well-Formed Terms is Complete
	Putting It All Together

	Signature Extensions and Finiteness
	Applications
	Chapter Notes

	Root-Labeling
	Semantic Labeling
	Plain Root-Labeling
	Root-Labeling Processor
	Closure Under Flat Contexts
	Touzet's SRS
	Chapter Notes

	Certification
	Proof Format
	Check Functions
	DP Transformation
	Subterm Criterion
	Closure Under Flat Contexts

	Code-Extraction
	Chapter Notes

	Conclusion
	Related Work
	Applications and Future Work
	Assessment

	Auxiliary Proofs
	General
	Abstract Rewriting
	Term Rewriting
	Subterm Criterion
	Signature Extensions

	Publications
	Bibliography

