
Modular and Certified Semantic Labeling and
Unlabeling∗

Christian Sternagel and René Thiemann

Institute of Computer Science, University of Innsbruck, Austria
{christian.sternagel|rene.thiemann}@uibk.ac.at

Abstract
Semantic labeling is a powerful transformation technique to prove termination of term rewrite
systems. The dual technique is unlabeling. For unlabeling it is essential to drop the so called
decreasing rules which sometimes have to be added when applying semantic labeling. We indicate
two problems concerning unlabeling and present our solutions.

The first problem is that currently unlabeling cannot be applied as a modular step, since the
decreasing rules are determined by a semantic labeling step which may have taken place much
earlier. To this end, we give an implicit definition of decreasing rules that does not depend on
any knowledge about preceding labelings.

The second problem is that unlabeling is in general unsound. To solve this issue, we introduce
the notion of extended termination problems. Moreover, we show how existing termination
techniques can be lifted to operate on extended termination problems.

All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project.

1998 ACM Subject Classification F.4.2

Keywords and phrases semantic labeling, certification, term rewriting, unlabeling

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Category Regular Research Paper

1 Introduction

In recent years, termination provers for term rewrite systems (TRSs) became more and more
powerful. Nowadays, we do no longer have to prove termination by embedding all rules of
a TRS into a single reduction order. Instead, most provers construct multi-step proofs by
combining different termination techniques1 resulting in tree-like termination proofs. As a
result, termination provers became more complex and thus, more error-prone. It is regularly
demonstrated that we cannot blindly trust termination provers. Every now and then, some
prover delivers a faulty proof. Most of the time, this is only detected if there is another
prover giving a contradictory answer. Furthermore, it just is too much work to check a
generated proof by hand. (Besides, checking by hand is not very reliable.)

To solve this issue, recent interest is in the automatic certification of termination proofs
[3, 4, 18]. To this end, we formalized many termination techniques in our Isabelle/HOL [15]
library IsaFoR [18] (in the remainder we just write Isabelle, instead of Isabelle/HOL). Using
IsaFoR, we obtain CeTA, an automatic certifier for termination proofs.

∗ This research is supported by FWF (Austrian Science Fund) project P22767-N13.
1 Several termination techniques are based upon reduction orders, but there are also techniques which do

not generate orders. Hence, the multi-step proofs are not just a lexicographic combination of orders.

© Christian Sternagel and René Thiemann;
licensed under Creative Commons License ND

submitted to 22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß Editor; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Modular and Certified Semantic Labeling and Unlabeling

In this paper, we present our formalization of semantic labeling and unlabeling [19], two
important termination techniques. Semantic labeling introduces differently labeled variants
of the same symbol, allowing a distinction in orders, etc. Semantic labeling typically produces
large TRSs. Hence, unlabeling is important to keep the number of symbols and rules small.

I Example 1.1. Consider the small TRS Secret_05/teparla3 from the termination problem
database (TPDB) which only consists of two rules, has two different symbols, and two variables.
We just describe the structure of the proof that has been generated by the termination prover
AProVE [10] in 21 seconds during the 2008 termination competition.2

After applying the dependency pair transformation [1] and some standard techniques, a
termination problem containing three rules and three different symbols is obtained. Then,
semantic labeling is applied. The result after simplification, is a system with five rules and
seven different symbols. Unlabeling yields a problem with three rules and three symbols.
Another labeling produces a new termination problem with 12 rules. This is finally proven
to be terminating using a matrix interpretation [6] of dimension two.

Note that without the unlabeling step, the second labeling would have returned a
system with 5025 rules instead of 12—for this huge termination problem no suitable matrix
interpretation of dimension two is detected.

Whereas the previous example shows that unlabeling is essential to keep systems small,
we also found examples where unlabeling was the key to get a successful termination proof
at all, cf. Example 4.2 for details.

Unfortunately, unlabeling is not sound in general. In order to allow nested labeling and
unlabeling and turn unlabeling into a sound and modular technique (not relying on context
information), we have designed a new framework. All existing termination techniques are
easily integrated in this framework. In fact, CeTA uses the new framework for certification.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized as part of IsaFoR. Hence, we merely give sketches of our “real” proofs. Our goal is
to show the general proof outlines and help to understand the full proofs. The library IsaFoR
with all formalized proofs, the executable certifier CeTA, and all details about our experiments
are available at CeTA’s website:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. In Section 2, we recapitulate some required notions of term
rewriting as well as the basic definitions of semantic labeling. Afterwards, in Section 3, we
give some challenges for modular labeling and unlabeling. Then, in Section 4, we extend the
previous results to the dependency pair framework. We discuss challenges for the certification
in Section 5. Our experiments are presented in Section 6 before we conclude in Section 7.

2 Preliminaries

2.1 Term Rewriting
We assume familiarity with term rewriting [2]. Still, we recall the most important notions
that are used later on. A (first-order) term t over a set of variables V and a set of function
symbols F is either a variable x ∈ V or an n-ary function symbol f ∈ F applied to n argument
terms f(~tn). For brevity we write ~tn to denote a sequence of n elements t1, . . . , tn and (h(~tn))

2 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708

http://cl-informatik.uibk.ac.at/software/ceta
http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708

Christian Sternagel and René Thiemann 3

(note the additional pair of parentheses) for (h(t1), . . . , h(tn)), i.e., mapping a function h
over the elements of a sequence ~tn. A context C is a term containing exactly one hole (�).
Replacing � in a context C by a term t is denoted by C[t]. A (rewrite) rule is a pair of
terms `→ r and a TRS R is a set of such rules. The rewrite relation (induced by R) →R is
the closure under substitutions and contexts of R, i.e., s→R t iff there is a context C, a rule
`→ r ∈ R, and a substitution σ such that s = C[`σ] and t = C[rσ].

We say that an element t is terminating / strongly normalizing (w.r.t. some binary relation
S), and write SNS(t), if it cannot start an infinite sequence t = t1 S t2 S t3 S · · · . The whole
relation is terminating, written SN(S), if all elements are terminating w.r.t. it. For a TRS R
and a term t, we write SN(R) and SNR(t) instead of SN(→R) and SN→R(t). We write S+

(S∗) for the (reflexive and) transitive closure of S.

I Definition 2.1 (Termination Technique). A termination technique is a mapping TT from
TRSs to TRSs. It is sound if termination of TT(R) implies termination of R.

Using sound termination techniques one tries to modify a given TRS R until the empty
TRS is reached. If this succeeds, one obtains a proof tree showing termination of R.

2.2 Semantic Labeling
An algebra A over F is a pair (A, {fA}f∈F) consisting of a non-empty carrier A and an
interpretation function fA : An → A for every n-ary function symbol f ∈ F . Given an
assignment α : V → A, we write [α]A(t) for the interpretation of the term t. An algebra A is
a model of a rewrite system R, if [α]A(`) = [α]A(r) for all rules `→ r ∈ R and all assignments
α. If the carrier A is equipped with a well-founded order >A such that [α]A(`) >A [α]A(r)
for all `→ r ∈ R and all assignments α, then A is a quasi-model of R.

For each function symbol f there also is a corresponding non-empty set Lf of labels for f
and a labeling function `f : An → Lf . The labeled signature Flab consists of n-ary function
symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf . The labeling function
`f determines the label of the root symbol f of a term f(~tn) based on the values of the
arguments ~tn. For every assignment α : V → A the mapping labα : T (F ,V)→ T (Flab,V) is
inductively defined by

labα(t) =
{
f`f ([α]A(~tn))(labα(~tn)) if t = f(~tn),
t otherwise.

The labeled TRS lab(R) over the signature Flab consists of the rules labα(`)→ labα(r) for
all `→ r ∈ R and α : V → A.

For quasi-models, every set of labels Lf needs to be equipped with a well-founded order
>Lf

, giving rise to the set Dec of decreasing rules:

Dec = {fa(~xn)→ fb(~xn) | a, b ∈ Lf , a >Lf
b, n-ary f ∈ F}

Furthermore, every interpretation function fA and every labeling function `f has to be
weakly monotone, i.e., if a >A a′ then fA(a1, . . . , a, . . . , an) >A fA(a1, . . . , a

′, . . . , an) and
`f (a1, . . . , a, . . . , an) >Lf

`f (a1, . . . , a
′, . . . , an).

Unlabeling a symbol is defined via the following function, removing one layer of labels.
Then, the function is extended homomorphically to terms, rules, and TRSs.

unlab(f) =
{
g if f = ga,
f if f is not labeled.

RTA’11

4 Modular and Certified Semantic Labeling and Unlabeling

In [19], Zantema showed that labeled TRSs can simulate their unlabeled counterparts
(corresponding to 1 and 2 in the following lemma; 3 and 4 are obvious).

I Lemma 2.2. Let R be a TRS,A an algebra, and α an arbitrary assignment.
1. If A is a model of R then t→R u implies labα(t)→lab(R) labα(u).
2. If A is a quasi-model of R then t→R u implies labα(t)→+

lab(R)∪Dec labα(u).
3. t→lab(R) u implies unlab(t)→R unlab(u).
4. t→Dec u implies unlab(t) = unlab(u).

From Lemma 2.2 we obtain that R is terminating if and only if lab(R) (∪Dec) is termi-
nating when A is a (quasi-)model of R. Completeness is achieved by unlabeling all terms in a
possible infinite rewrite sequence of the labeled TRS. Soundness is proved by transforming a
presupposed infinite rewrite sequence in R into an infinite rewrite sequence in lab(R) (∪Dec).
This is done by applying the labeling function labα(·) (for an arbitrary assignment α) to all
terms in the infinite rewrite sequence of R. Hence, semantic labeling is sound and complete
for termination (using models and quasi-models, respectively).

3 Modular Semantic Labeling and Unlabeling

One problem with semantic labeling is that the labeled system is usually large. Hence,
termination provers such as AProVE [10], Jambox [5], Torpa [20], and TPA [13] perform
labeling, then try to simplify the resulting TRS by sound termination techniques, and
afterwards unlabel the TRS again, to continue on a small system. This poses two challenges:
1. If labeling was performed using a quasi-model, then the decreasing rules are added.

However, unlabeling a decreasing rule fa(~xn)→ fb(~xn) leads to the nonterminating rule
f(~xn)→ f(~xn). Hence, one has to remove the decreasing rules before unlabeling.

2. Between labeling and unlabeling, arbitrary (sound) termination techniques may be applied.
However, for unlabeling we want to remove the decreasing rules that are determined by
the corresponding labeling step. Hence, unlabeling is not a modular technique that only
takes a TRS as input. Instead, it relies on context information, namely the decreasing
rules that have been used in the corresponding labeling step (which may occur several
steps upwards in the termination proof).

Solving the first challenge is technically easy: just remove the decreasing rules before
unlabeling. The only question is, whether it is always sound to remove the decreasing rules.

To handle the second challenge, we propose an implicit definition of decreasing rules.

I Definition 3.1 (Decreasing rules of a TRS). We define the decreasing rules of a TRS R as
D(R) = {`→ r ∈ R | unlab(`) = unlab(r) ∧ ` 6= r}. We further define the unlabeled version
of a TRS as U(R) = unlab(R \ D(R)).

The condition ` 6= r ensures that a labeled variant of an original rule is never decreasing. For
example, if f(~xn)→ f(~xn) is a rule (and hence the original TRS is not terminating), then
each labeled variant has the form fa(~xn)→ fa(~xn) for some a ∈ Lf . If we would consider
such a rule as decreasing, we could transform a nonterminating TRS into a terminating one,
using labeling and unlabeling.

I Lemma 3.2. Let Lf and >Lf
be given for each symbol f to determine Dec. Then

D(Dec) = Dec, D(lab(R)) = ∅, D(lab(R) ∪ Dec) = Dec, and U(lab(R) ∪ Dec) = R.

Now it is easy to define a modular version of unlabeling which does not require external
knowledge about what the decreasing rules are.

Christian Sternagel and René Thiemann 5

I Definition 3.3 (Unlabeling as modular termination technique). The unlabeling termination
technique replaces a TRS R by U(R).

Hence, we solved the second challenge and made unlabeling into an independent technique
which does not need any knowledge on the previous application of semantic labeling that
introduced the decreasing rules. Thus, termination proofs can now use the following structure
where no global information has to be passed around:
1. Switch from R to lab(R) (∪ Dec).
2. Modify lab(R) (∪ Dec) by sound termination techniques resulting in R′.
3. Unlabel R′ resulting in U(R′).

Although this approach is used in termination provers, it is unsound in general as not
every sound termination technique may be used between labeling and unlabeling. This is
illustrated by the following example.

I Example 3.4. We start with the nonterminating TRS R = {f(a)→ f(b), b→ a}. Then,
we apply semantic labeling using the algebra A with A = {0, 1}, interpretations fA(x) = 0,
aA = 0, bA = 1, Lf = A, `f(x) = x, and the standard order on the naturals. Note
that A is a quasi-model of R. The resulting labeled TRS is lab(R) ∪ Dec = {f0(a) →
f1(b), b → a, f1(x) → f0(x)}. It is sound to replace lab(R) ∪ Dec by the (nonterminating)
TRS R′ = {f1(x) → f0(x), f0(x) → f1(x)}. However, unlabeling R′ yields U(R′) = ∅ as
both rules in R′ are decreasing according to Definition 3.1. Hence, some of the performed
deductions were not sound. Since semantic labeling and the switch from lab(R) ∪ Dec to R′
are sound, we obtain that unlabeling via U is unsound.

The problematic step when unlabeling, i.e., when switching from R to U(R) = unlab(R \
D(R)), is the removal of the decreasing rules. If the decreasing rules are the only source of
nontermination, then this removal is unsound. However, the decreasing rules Dec that are
obtained from semantic labeling are always terminating. Thus, after labeling we have to prove
termination of the labeled system including the decreasing rules, but we may assume that
the decreasing rules are terminating. If we know that the decreasing rules are terminating,
then unlabeling by U is sound. We obtain the following structure of termination proofs:
1. Initially we have to prove SN(R).
2. After labeling, we have to prove SN(D(R′)) =⇒ SN(R′) for R′ = lab(R) ∪ Dec.
3. Then, we modify R′ to R′′ with SN(D(R′′)) =⇒ SN(R′′) implies SN(D(R′)) =⇒ SN(R′).
4. Finally, we unlabel R′′ resulting in U(R′′) and have to prove SN(U(R′′)).
This approach works fine for termination proofs where semantic labeling is not nested.
However, we are aware of termination proofs where labeling is applied in a nested way.

I Example 3.5. Consider the TRS Gebhardt_06/16 from the TPDB. During the 2008
termination competition, Jambox proved termination of this TRS, applying the following
steps: labeling - labeling - labeling - polynomial order - unlabeling - four applications of
polynomial orders - unlabeling - unlabeling.3

To support this kind of proof we define the following variant of strong normalization.

I Definition 3.6. An extended termination problem is a pair (R, n) consisting of a TRS R
and a number n ∈ N. An extended problem (R, n) is strongly normalizing (SN(R, n)) iff

(∀m < n.SN(D(Um(R)))) =⇒ SN(R).

3 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220

RTA’11

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220

6 Modular and Certified Semantic Labeling and Unlabeling

An extended termination technique is a mapping xTT from extended termination problems
to extended termination problems. It is sound iff SN(xTT(R, n)) implies SN(R, n).

The number n in an extended termination problem (R, n) describes how often we can
assume that the decreasing rules are terminating, and hence, it tells us how often we can
delete the decreasing rules during unlabeling. The following lemma provides the link between
both variants of strong normalization.

I Lemma 3.7. 1. SN(R) iff SN(R, 0).
2. If SN(R) then SN(R, n).

I Lemma 3.8 (Extended Unlabeling). Extended unlabeling is sound where

U(R, n) =
{

(U(R), n− 1) if n > 0,
(unlab(R), 0) otherwise.

Proof. We only consider the interesting case where n > 0. So, we have to show SN(R, n)
under the first assumption SN(U(R), n− 1). To prove SN(R, n), we have to prove SN(R)
under the second assumption ∀m < n. SN(D(Um(R))). Since n > 0 we can choose m = 0
and obtain SN(D(R)).

To show SN(R) we assume that there is an infinite →R-derivation t1 →R t2 →R · · ·
and obtain a contradiction. The infinite derivation is also an infinite →R\D(R) ∪ →D(R)-
derivation. Since D(R) is terminating, we know that there are infinitely many i with
ti→R\D(R)ti+1. Hence unlab(ti)→U(R) unlab(ti+1) for all these i as U(R) = unlab(R\D(R)).
Moreover, for all i where ti →D(R) ti+1, we know that unlab(ti) →unlab(D(R)) unlab(ti+1)
and hence, unlab(ti) = unlab(ti+1) since every rule in unlab(D(R)) has the same left- and
right-hand side. Thus, we have constructed an infinite derivation for U(R) proving that
SN(U(R)) does not hold. Together with the assumption SN(U(R), n− 1), we obtain that
∀m < n − 1.SN(D(Um(U(R)))) does not hold (by Definition 3.6). Hence, there is some
m < n− 1 such that SN(D(Um+1(R))) does not hold. Now, using the second assumption
and m+ 1 < n we obtain SN(D(Um+1(R))), providing the required contradiction. J

I Lemma 3.9 (Extended Semantic Labeling). Semantic labeling is sound as extended termi-
nation technique: Whenever we can switch from R to lab(R) (∪ Dec) via semantic labeling,
then it is sound to switch from (R, n) to (lab(R) (∪ Dec), n+ 1).

Proof. Note that models are just a special case of quasi-models as already observed in [19].
Hence, we only consider quasi-models in the proof. So, assuming SN(lab(R) ∪ Dec, n+ 1)
we have to prove SN(R, n). To show the latter, we may assume ∀m < n. SN(D(Um(R)))
and have to prove SN(R). We do so by assuming that there is an infinite R-derivation
t1 →R t2 →R · · · and deriving a contradiction. As we have a quasi-model we know
that labα(t1) →+

lab(R)∪Dec labα(t2) →+
lab(R)∪Dec · · · is an infinite lab(R) ∪ Dec-derivation,

showing that SN(lab(R) ∪ Dec) does not hold. By the conditions of semantic labeling,
we further know SN(Dec). Using SN(lab(R) ∪ Dec, n + 1) we conclude that ∀m < n +
1.SN(D(Um(lab(R) ∪ Dec))) does not hold. Hence there is some m < n + 1 such that
SN(D(Um(lab(R) ∪ Dec))) does not hold. If m = 0 then by Lemma 3.2 we know that
D(Um(lab(R) ∪ Dec)) = D(lab(R) ∪ Dec) = Dec, and thus SN(Dec) does not hold, a
contradiction. Otherwise, m = m′ + 1 for some m′ where m′ < n. Together with
∀m < n.SN(D(Um(R))), we obtain SN(D(Um′(R))). On the other hand, we know that
SN(D(Um′+1(lab(R) ∪ Dec))) does not hold. This again leads to a contradiction since
D(Um′+1(lab(R) ∪ Dec)) = D(Um′(U(lab(R) ∪ Dec))) = D(Um′(R)) by Lemma 3.2. J

Christian Sternagel and René Thiemann 7

The previous two lemmas show that labeling and unlabeling can be performed as inde-
pendent techniques on extended termination problems.

The question remains how to integrate other existing termination techniques, i.e., which
techniques may be applied between labeling and unlabeling. Here, we consider two variants.

I Definition 3.10 (Lift). Let TT be some termination technique. Then lift(TT) and
lift0(TT) are extended termination techniques where lift(TT)(R, n) = (TT(R), n) and
lift0(TT)(R, n) = (TT(R), 0).

In principle lift(TT) is preferable, since it does not change n, allowing to remove the
decreasing rules when unlabeling (which is not possible using lift0(TT)). However, in general
the fact that TT is sound does not imply that lift(TT) is sound. This can easily be seen
by reusing Example 3.4 where the extended termination problem (R, 0) is transformed to
(lab(R) ∪ Dec, 1) by semantic labeling, then to (R′, 1) using lift(TT) for the unnamed sound
termination technique TT in Example 3.4, and then to (∅, 0) by unlabeling. Since this
establishes a complete termination proof for the nonterminating TRS R, and since labeling
and unlabeling are sound, we know that lift(TT) is unsound.

Since we cannot always use lift(TT), we give three different approaches to use termination
techniques as extended termination techniques (in order of preference):
1. Identify a (hopefully large) class of termination techniques TT for which soundness of

TT implies soundness of lift(TT).
2. Perform a direct proof that lift(TT) is sound as extended termination technique.
3. Use lift0(TT) for any sound termination technique TT.

We first prove soundness of approach 3.

I Lemma 3.11. If TT is sound then lift0(TT) is sound.

Proof. We have to prove that SN(TT(R), 0) implies SN(R, n). So, assume SN(TT(R), 0).
Hence, SN(TT(R)) using Lemma 3.7(1). As TT is sound, we conclude SN(R) and this
implies SN(R, n) by Lemma 3.7(2). J

We start to prove soundness of lift(TT) for some sound termination technique TT in order
to detect where the problem is. To prove soundness, we have to show that SN(TT(R), n)
implies SN(R, n). Thus, assume SN(TT(R), n). To prove SN(R, n) we may assume that
∀m < n.SN(D(Um(R))) and have to prove SN(R). Since TT is sound, it suffices to
prove SN(TT(R)). To this end, it suffices to show ∀m < n.SN(D(Um(TT(R)))) by using
SN(TT(R), n). Hence, the only missing step is to conclude

SN(D(Um(R))) =⇒ SN(D(Um(TT(R)))). (?)

I Lemma 3.12. If TT is sound and if (?) is satisfied for all m, then lift(TT) is sound.

A sufficient condition to ensure (?) is to demand that TT(R) ⊆ R as unlab, D, and U
are monotone w.r.t. set inclusion. Hence, all techniques that remove rules like rule removal
via reduction pairs, or (RFC) matchbounds [7, 14] can safely be used between labeling and
unlabeling. However, this excludes techniques like the flat context closure which is required
for root-labeling.

I Definition 3.13 (Root-Labeling). Let R be a TRS over the signature F . Let AF be an
algebra with carrier F . Moreover, for every n-ary f ∈ F , we fix the interpretation function
fAF (~xn) = f , the set of labels Lf = Fn, and the labeling function `f (~xn) = (~xn).

RTA’11

8 Modular and Certified Semantic Labeling and Unlabeling

Note that root-labeling is just a specific instantiation of general semantic labeling with
models. Hence, it is sound whenever AF is a model of R. However, in general AF does not
constitute a model of R. Hence, a transformation technique was introduced that modifies R
in a way that AF always is a model of the result: the closure under flat contexts.

I Definition 3.14 (Flat Context Closure). For an n-ary symbol f , the flat context for the i-th
argument is FCi(f) = f(x1, . . . , xi−1,�, xi+1, . . . , xn), where all the xj are fresh variables.
The set of flat contexts over F is defined by FC(F) = {FCi(f) | n-ary f ∈ F , 1 6 i 6 n}.
The closure under flat contexts of a TRS R w.r.t. the signature F is given by

FCF (R) = {C[`]→ C[r] | C ∈ FC(F), `→ r ∈ Ra} ∪ (R \Ra)

where Ra denotes those rules of R, for which the root of the left-hand side and the root of
the right-hand side differ.

Since Jambox applies root-labeling recursively (the labeling in Example 3.5 is root-
labeling), we definitely would like to aim at a larger class of termination techniques than
those which satisfy TT(R) ⊆ R. A natural extension would be to use the weaker condition
→TT(R) ⊆ →R. Then, also root-labeling together with the closure under flat contexts would
be supported. Unfortunately, →TT(R) ⊆ →R does not imply →D(Um(TT(R))) ⊆ →D(Um(R))
and thus, does not imply (?). Moreover, in the following example we show that even if TT is
sound and →TT(R) ⊆ →R then soundness of lift(TT) cannot be guaranteed.

I Example 3.15. Consider the TRS R = {f1(x) → f0(a), f0(x) → f1(x)}. Let TT be the
termination technique that replaces R by R′ = {f1(a)→ f0(a), f0(x)→ f1(x)}. Then, TT is
sound as R′ is not terminating. Moreover, →R′ ⊆ →R. Nevertheless, lift(TT) is unsound,
since it would replace (R, 1) by (R′, 1). That this replacement is unsound can be seen as
follows: SN(R, 1) does not hold since R is not terminating but the decreasing rules of R (i.e.,
D(R) = {f0(x) → f1(x)}) are terminating. However, SN(R′, 1) is satisfied as D(R′) = R′
and hence termination of D(R′) implies termination of R′.

We have seen that requiring TT(R) ⊆ R is too restrictive to allow root-labeling. But only
requiring →TT(R) ⊆ →R is unsound. However, there is another condition which is weaker
than set inclusion, implies soundness, and allows the application of flat context closures.

I Definition 3.16. The context subset relation ⊆c is defined as

R ⊆c S iff ∀`→ r ∈ R.∃C, `′ → r′ ∈ S. ` = C[`′] ∧ r = C[r′].

I Lemma 3.17. 1. R ⊆ S implies R ⊆c S
2. R ⊆c S implies →R ⊆ →S
3. R ⊆c S implies D(R) ⊆c D(S) and U(R) ⊆c U(S)
4. If TT is sound and ∀R.TT(R) ⊆c R then lift(TT) is sound

Proof. 1. To show R ⊆c S, let `→ r ∈ R. Using R ⊆ S we know that `→ r ∈ S. Hence,
∃C, `′ → r′ ∈ S. ` = C[`′] ∧ r = C[r′] by choosing C = � and `′ → r′ = `→ r.

2. Assume t = D[`σ] →R D[rσ] = s using some rule ` → r ∈ R. As R ⊆c S, we obtain
C and `′ → r′ ∈ S such that ` = C[`′] and r = C[r′]. Hence, t = D[`σ] = D[C[`′]σ] =
D[Cσ[`′σ]]→S D[Cσ[r′σ]] = D[C[r′]σ] = D[rσ] = s.

3. We first show D(R) ⊆c D(S). So, let ` → r ∈ D(R). Hence, ` → r ∈ R, unlab(`) =
unlab(r) and ` 6= r. UsingR ⊆c S we obtain C and `′ → r′ ∈ S such that ` = C[`′] and r =
C[r′]. Thus, unlab(C)[unlab(`′)] = unlab(C[`′]) = unlab(`) = unlab(r) = unlab(C[r′]) =

Christian Sternagel and René Thiemann 9

unlab(C)[unlab(r′)] shows that unlab(`′) = unlab(r′). Similarly, C[`′] = ` 6= r = C[r′]
implies `′ 6= r′. So, `′ → r′ ∈ D(S) and thus, ∃C, `′ → r′ ∈ D(S). ` = C[`′] ∧ r = C[r′].
Now let us show U(R) = unlab(R\D(R)) ⊆c unlab(S\D(S)) = U(S). This property is the
crucial part, since potentially we remove less rules fromR than from S. Assume unlab(`)→
unlab(r) ∈ U(R), i.e., `→ r ∈ R and unlab(`) 6= unlab(r) ∨ ` = r. As R ⊆c S we obtain
C and `′ → r′ ∈ S such that ` = C[`′] and r = C[r′]. Hence, unlab(`) = unlab(C[`′]) =
unlab(C)[unlab(`′)] and unlab(r) = unlab(C[r′]) = unlab(C)[unlab(r′)]. Thus, we can
simplify unlab(`) 6= unlab(r)∨ ` = r to unlab(C)[unlab(`′)] 6= unlab(C)[unlab(r′)]∨C[`′] =
C[r′] and further to unlab(`′) 6= unlab(r′) ∨ `′ = r′. Using `′ → r′ ∈ S this shows that
`′ → r′ ∈ S \ D(S) and thus, unlab(`′) → unlab(r′) ∈ U(S). By choosing the context
unlab(C) and the rule unlab(`′) → unlab(r′) we have finally shown that ∃C, `′ → r′ ∈
U(S). unlab(`) = C[`′] ∧ unlab(r) = C[r′].

4. By Lemma 3.12 we only have to prove (?). Using TT(R) ⊆c R and 3 one can show that
Um(TT(R)) ⊆c Um(R) by induction on m. Using 3 again, we conclude D(Um(TT(R)))
⊆c D(Um(R)) and thus, →D(Um(TT(R))) ⊆ →D(Um(R)) by 2. Then (?) immediately
follows. J

I Corollary 3.18. Let R be a TRS over the signature F . Then lift(FCF) is sound.

Proof. It was shown in [16] that FCF is sound for TRSs. Furthermore, FCF (R) ⊆c R by
definition of FC(F) and thus, by Lemma 3.17(4), lift(FCF) is sound, too. J

Note that several termination techniques TT satisfy TT(R) ⊆c R and hence, can be
used between labeling and unlabeling. However, there are still some techniques which do not
satisfy this requirement. Examples would be string reversal and uncurrying [11].

Of course, it is possible to use lift0(TT), however, for string reversal also a direct soundness
proof can be performed to show that lifting string reversal is sound.

I Theorem 3.19. Let TT be the technique of string reversal where TT(R) = rev(R), if R is
a string rewrite system, and TT(R) = R, otherwise. Then lift(TT) is sound.

Proof. By Lemma 3.12 we just have to prove (?), i.e., we have to show for all m that
SN(D(Um(R))) implies SN(D(Um(rev(R)))). To this end, we have proven that reversing
can be commuted with both D and U : rev(D(R)) = D(rev(R)) and rev(U(R)) = U(rev(R).
Hence, rev(D(Um(R))) = D(Um(rev(R))). This completes the proof: since string reversal
is complete, we know that termination of D(Um(R)) implies termination of rev(D(Um(R)))
and therefore, also of D(Um(rev(R))). J

To summarize, we can now certify termination proofs where labeling and unlabeling
are modular techniques (and hence, can be applied recursively), and where all supported
techniques of CeTA (except uncurrying) can be used between labeling and unlabeling.

An easy alternative to our extended termination techniques would be the use of relative
rewriting. The obvious idea is to add the decreasing rules as relative rules when performing
semantic labeling. In this way, unlabeling would directly be modular and sound, since one can
always remove relative rules where both sides of the rule are identical. This alternative is used
in the independent and unpublished formalization of semantic labeling in the CoLoR library.
The main problem with this alternative is that some techniques like RFC matchbounds can
be used in our framework, but not in combination with relative rewriting in general (during
the termination competition in 2010 a tool has been disqualified for giving a wrong answer
for a relative termination problem; the reason was the use of RFC matchbounds). For a
further discussion on matchbounds and relative rewriting we refer to [12].

RTA’11

10 Modular and Certified Semantic Labeling and Unlabeling

4 Dependency Pair Framework

The DP framework [8] is a way to modularize termination proofs. Instead of TRSs one
investigates so called DP problems, consisting of two TRSs. The initial DP problem for a
TRS R is (DP(R),R) where DP(R) denotes the dependency pairs of R [1]. A (P,R)-chain
is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R, then the
chain is minimal. A DP problem (P,R) is called finite [8], if there is no minimal infinite
(P,R)-chain. Proving finiteness of a DP problem is done by simplifying (P,R) using so
called processors recursively. A processor transforms a DP problem into a new DP problem.
The aim is to reach a DP problem where the P-component is empty (such DP problems are
trivially finite). To conclude finiteness of the initial DP problem, the applied processors need
to be sound. A processor Proc is sound whenever for all DP problems (P,R) we have that
finiteness of Proc(P,R) implies finiteness of (P,R).

Semantic labeling can easily be lifted to DP problems. Soundness of the following
processor is an immediate consequence of [19].

I Theorem 4.1. Let (P,R) be a DP problem and A be an algebra. If A is a quasi-model of
R, then it is sound to return the DP problem (lab(P), lab(R) ∪ Dec).

The following example shows that unlabeling is not only necessary for efficiency, but that
unlabeling is required to apply other techniques.

I Example 4.2. We consider the TRS Secret_07/4 from the TPDB.

1: g(c, g(c, x)) → g(e, g(d, x))
2: g(d, g(d, x)) → g(c, g(e, x))
3: g(e, g(e, x)) → g(d, g(c, x))

4: g(x, g(y, g(x, y))) → g(a, g(x, g(y, b)))
5: f(g(x, y)) → g(y, g(f(f(x)), a))

In the 2008 termination competition AProVE found a termination proof of the following
structure (we present a simplified version, missing some unnecessary steps that have been
applied in the original proof).4 First, the initial DP problem is transformed into (P, {1–4})
where P consists of the pairs G(c, g(c, x))→ G(e, g(d, x)), G(d, g(d, x))→ G(c, g(e, x)), and
G(e, g(e, x))→ G(d, g(c, x)). Then, labeling and further processing yields the DP problem
(P ′,R′) where P ′ contains the pairs

G00(c, g00(c, x))→ G00(e, g00(d, x)) G00(e, g00(e, x))→ G00(d, g00(c, x))
G00(d, g00(d, x))→ G00(c, g00(e, x))

and R′ is the following TRS.

g00(c, g00(c, x))→ g00(e, g00(d, x)) g00(c, g01(c, x))→ g00(e, g01(d, x))
g00(d, g00(d, x))→ g00(c, g00(e, x)) g00(d, g01(d, x))→ g00(c, g01(e, x))
g00(e, g00(e, x))→ g00(d, g00(c, x)) g00(e, g01(e, x))→ g00(d, g01(c, x))

4 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909

Christian Sternagel and René Thiemann 11

Hence, all labeled versions of Rule 4 have been deleted, and unlabeling yields the DP problem
(P, {1–3}). This DP problem is applicative. Hence, we may apply the A-transformation [9]
to obtain the DP problem having the pairs

C(c(x))→ E(d(x)) D(d(x))→ C(e(x)) E(e(x))→ D(c(x))

and the rules

c(c(x))→ e(d(x)) d(d(x))→ c(e(x)) e(e(x))→ d(c(x))

This DP problem is solved using standard techniques. Note that for the A-transformation it
was essential that unlabeling was performed, as the DP problem (P ′,R′) is not applicative.

Unfortunately, unlabeling as processor is in general unsound. In contrast to unlabeling
on TRSs, here a problem already arises when using the model-version of semantic labeling
without decreasing rules. The main reason is that unlabeling might introduce nontermination.
Hence, minimality of an unlabeled infinite chain cannot be guaranteed.5

I Example 4.3. Consider the DP problem (P,∅) where P = {F(x) → F(g(a))}. This
DP problem is obviously not finite. Applying semantic labeling is trivially possible since
there are no rules which have to satisfy the (quasi-)model condition. We choose A = {0, 1},
and for each f we define fA(. . .) = 0 and `f (~xn) = (~xn). We obtain the labeled pairs
lab(P) = {F0(x)→ F0(g0(a)),F1(x)→ F0(g0(a))} and by Theorem 4.1 we know that the DP
problem (lab(P),∅) is again not finite. We can further modify the DP problem by replacing
it with (lab(P),R) where R = {g1(x)→ g1(x)}. Note that this modification is sound since
(lab(P),R) still allows a minimal infinite chain and is therefore not finite.

However, applying unlabeling we obtain the DP problem (P, unlab(R)) which is finite
as now the right-hand side F(g(a)) of the only pair in P is not terminating w.r.t. U(R) =
{g(x)→ g(x)}. Hence, unlabeling is unsound in general. The main problem is again that
the notion of soundness is too weak. It allows the application of processors between labeling
and unlabeling which may replace (lab(P),∅) by (lab(P),R).

To solve this problem, we again add a counter n which tells us how often we may unlabel.

I Definition 4.4. An extended DP problem is a triple (P,R, n) where (P,R) is a DP problem
and n ∈ N. An extended DP problem (P,R, n) is finite iff there is no infinite chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

such that for all i: ∀m 6 n. SNUm(R)(unlabm(tiσi)).

Hence, the only difference between finiteness of DP problems and extended DP problems is
the minimality condition (SNR(tiσi) versus ∀m 6 n. SNUm(R)(unlabm(tiσi))). We therefore
obtain a similar lemma to Lemma 3.7, but now for DP problems.

I Lemma 4.5. 1. (P,R) is finite iff (P,R, 0) is finite.
2. If (P,R) is finite then (P,R, n) is finite.

As for termination techniques we can lift every processor to an extended processor.

5 There is no problem in the formalization of semantic labeling in CoLoR at this point, as it does not
feature minimal chains.

RTA’11

12 Modular and Certified Semantic Labeling and Unlabeling

I Definition 4.6 (Lift). Let Proc be a processor with Proc(P,R) = (P ′,R′). Then
lift(Proc) and lift0(Proc) are extended processors where lift(Proc)(P,R, n) = (P ′,R′, n)
and lift0(Proc)(P,R, n) = (P ′,R′, 0).

We obtain similar results for lift0 as for termination techniques: whenever Proc is
sound then lift0(Proc) is sound. However, additionally demanding that R′ ⊆c R or even
P ′ ⊆ P ∧ R′ = R where Proc(P,R) = (P ′,R′) does not suffice to ensure soundness of
lift(Proc). This is demonstrated in the upcoming example.

I Example 4.7. Let P = {F0(x)→ F0(b)}, P ′ = {F0(x)→ F0(g0(b))}, and R = {g1(x)→
g0(h1(x))}. Then (P,R, 1) is not finite as obviously there is an infinite (P,R)-chain where all
terms in the chain are F0(b) and moreover, F0(b) is terminating w.r.t. R and unlab(F0(b)) =
F(b) is terminating w.r.t. U(R) = {g(x)→ g(h(x))}. Hence, also (P ∪ P ′,R, 1) is not finite
by constructing the same chain.

Note that the processor Proc which replaces (P ∪P ′,R) by (P ′,R) is sound, since (P ′,R)
is not finite: again, there is an infinite (P ′,R)-chain, and every chain is also minimal since R
is terminating. However, lift(Proc) is unsound as (P ′,R, 1) is finite: otherwise, there would
be an infinite chain where F0(g0(b)) is terminating w.r.t. R and unlab(F0(g0(b))) = F(g(b))
is terminating w.r.t. U(R). But it is easy to see that F(g(b)) is not terminating w.r.t. U(R).

Since requiring just R′ ⊆c R (or even P ′ ⊆ P ∧ R′ = R) does not suffice to ensure
soundness of lift(Proc) we demand a slightly stronger property than soundness.

I Definition 4.8. A processor Proc is chain-identifying iff whenever Proc(P,R) = (P ′,R′)
and there is some minimal infinite (P,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

then R′ ⊆c R and there is some k such that

skσk →P′ tkσk →∗R′ sk+1σk+1 →P′ tk+1σk+1 →∗R′ sk+2σk+2 →P′ tk+2σk+2 →∗R′ · · ·

is an infinite (P ′,R′)-chain.

Chain-identifying processors ensure that every minimal infinite chain of (P,R) has an
infinite tail where R∗-steps can be replaced by R′∗-steps and all pairs are from P ′. Note
that every chain-identifying processor is sound. Moreover, several processors are indeed
chain-identifying. Some examples are the reduction pair processor, the dependency graph
processor, and all standard processors which just remove pairs and rules. The following
lemma shows that chain-identifying processors can be used as extended processors via lift.

I Lemma 4.9. 1. If Proc is sound, then lift0(Proc) is sound.
2. If Proc is chain-identifying then lift(Proc) is sound.

Proof. Let P, R, P ′, and R′ be given such that Proc(P,R) = (P ′,R′).
1. We assume that (P ′,R′, 0) is finite and have to show that (P,R, n) is finite. By

Lemma 4.5(1) and the assumption we know that (P ′,R′) is finite. Thus, also (P,R) is
finite using the soundness of Proc. By Lemma 4.5(2) we conclude finiteness of (P,R, n).

2. Here, we may assume that (P ′,R′, n) is finite and have to show that (P,R, n) is finite.
We show finiteness of (P,R, n) via contraposition. So, assume (P,R, n) is not finite.
This shows that there is an infinite (P,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

Christian Sternagel and René Thiemann 13

such that for all i we have ∀m 6 n. SNUm(R)(unlabm(tiσi)). By choosing m = 0 we also
have SNR(tiσi) for all i. Hence, the chain is also a minimal infinite (P,R)-chain. Since
Proc is chain-identifying we know that R′ ⊆c R and there is some k such that

skσk →P′ tkσk →∗R′ sk+1σk+1 →P′ tk+1σk+1 →∗R′ sk+2σk+2 →P′ tk+2σk+2 →∗R′ · · ·

is an infinite (P ′,R′)-chain. We continue to prove that for every i and every m 6 n we
have SNUm(R′)(unlabm(tiσi)). This leads to the desired contradiction, since then we have
shown that (P ′,R′, n) is not finite.
To prove SNUm(R′)(unlabm(tiσi)) we first use minimality of the (P,R)-chain to conclude
SNUm(R)(unlabm(tiσi)). Then the result immediately follows since the rewrite relation of
Um(R′) is a subset of the rewrite relation of Um(R) by Lemma 3.17, 2 and 3. J

Using these results allowed us to develop the first certified proof of the TRS in Example 4.2.
We only had to change the given proof such that uncurrying [11] is used instead of the
A-transformation, since we have only formalized the former technique. The detailed proof is
provided in the IsaFoR/CeTA repository.6

However, unlike for TRSs, root-labeling is not directly supported as root-labeling on DP
problems [16, 17] is not a chain-identifying processor. Here again, root-labeling itself is not
the problem, but making sure that the fixed algebra is a model of R, which is again done
by closing under flat contexts. In the DP framework we need the auxiliary function block4,
given by the equations block4(f(~tn)) = f(4(~tn)) and block4(x) = x.

I Definition 4.10 (Flat Context Closure). Let (P,R) be a DP problem such that R is
left-linear and F is a superset of the signature of R combined with the non-root symbols of
P. Furthermore, let 4 be a function symbol not in F . Then the closure under flat contexts
of (P,R) is given by FCF (P,R) = (block4(P),FC{4}∪F (R)).

As the pairs of a DP problem are modified, we do not get soundness of lift(FCF) via
Lemma 4.9. Nevertheless, by using the definition of finiteness of extended DP problems and
providing a manual proof one can show that lift(FCF) is indeed sound.

5 Problems in Certification

We present three problems that arose when trying to certify proofs with semantic labeling.
The first problem for the certifier is that internally it only works on extended termina-

tion/DP problems, whereas in the provided proofs just TRSs and DP problems are given
without the additional numbers. However, this problem is fixed by computing the number
during certification. This is easy and seems to be a safe solution: the format for termination
proofs remains unchanged, and so far no termination proof was refused with the reason that
the internal computation of the number was wrong.

The second and third problem are concerned with how semantic labeling is applied, since
usually variations of Lemma 3.9 and Theorem 4.1 are used in termination provers.

The second problem occurs for TRSs as well as DP problems. The theory about semantic
labeling demands that Dec is added to the new TRS when using quasi-models. However,
termination provers typically reduce the set of rules and “optimize” semantic labeling by
only adding rules Dec′ such that →Dec ⊆ →+

Dec′ .

6 http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/
examples/secret_07_trs_4_top.proof.xml

RTA’11

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml

14 Modular and Certified Semantic Labeling and Unlabeling

For example, if Lf = {0, 1, 2} and the order is the standard order on the naturals, then
Dec = {f2(x) → f1(x), f1(x) → f0(x), f2(x) → f0(x)}. However, the last rule is often
omitted since it can be simulated by the previous two rules. To certify these termination
proofs, we fist need to show that we may safely replace Dec by any Dec′ where→Dec ⊆ →+

Dec′ .
Moreover, we have to provide a certified algorithm which for a given TRS Dec′ and a given
order can ensure that the condition →Dec ⊆ →+

Dec′ is satisfied. Furthermore, the algorithm
should accept all Dec′ where the condition is satisfied.

The third problem only occurs when dealing with quasi-models in the DP framework.
Note that in standard DP problems the roots of P are special symbols (tuple symbols) which
do not occur in the remaining DP problem. However, when applying Theorem 4.1 as it is,
this invariant is destroyed since the decreasing rules for tuple symbols are added as new rules.
We illustrate the problem and two possible solutions in the following example.

I Example 5.1. Consider a DP problem (P,R) where F(s(x), a)→ F(x, b) ∈ P and b is not
defined in R. Then, the dependency graph estimation EDG [1] can detect that there is no
connection from the mentioned pair to itself. However, when performing labeling with a
quasi-model where s(x) is interpreted as min(x+ 1, 2) and where `F(x, y) = x then for the
mentioned pair we get all three rules {6, 8, 10} in the labeled pairs P ′ and the decreasing
rules for F are DecF = {7, 9, 11}.

6: F2(s(x), a) → F2(x, b)
7: F2(x, y) → F1(x, y)

8: F2(s(x), a) → F1(x, b)
9: F2(x, y) → F0(x, y)

10: F1(s(x), a) → F0(x, b)
11: F1(x, y) → F0(x, y)

Note that when adding DecF as new rules, then the EDG contains an edge from
F2(s(x), a) → F1(x, b) to all other pairs since F1 is defined in DecF. Hence, this is not
the preferred way to add decreasing rules: not even the decrease in the labels is recognized.

One solution is to add DecF as new pairs. Then one obtains a standard DP problem and
the decrease in the labels is reflected in the EDG. But there still is a path from F2(s(x), a)→
F2(x, b) to F1(s(x), a)→ F0(x, b) via the pair F2(x, y)→ F1(x, y), since the information that
the second argument of Fn is b is lost when passing the pair F2(x, y)→ F1(x, y).

To encounter this problem, there is another solution where DecF is not produced at all,
but where the labels of all tuple-symbols in right-hand sides of P ′ are decreased. In this
example, one would have to add the additional pair F2(s(x), a)→ F0(x, b) to P ′.

Hence, termination proofs might have used one of the two variants instead of Theorem 4.1.
Here, the first variant returns the problem (lab(P) ∪ DecF] , lab(R) ∪ DecF) and the second
variant returns (lab(P)≥, lab(R) ∪ DecF) where DecF] are the decreasing rules for all tuple
symbols, DecF are the decreasing rules for the remaining symbols, and lab(P)≥ = {s →
f`′(~t) | s→ f`(~t) ∈ lab(P), ` ≥Lf

`′}.
To certify these termination proofs the problem was mainly in formalizing that these

variants of Theorem 4.1 are indeed sound.

I Theorem 5.2. Both variants of Theorem 4.1 are sound, provided that they are applied on
DP problems (P,R) where neither left- nor right-hand sides of P are variables and the roots
of P are distinguished tuple symbols which do not occur in the remaining DP problem.

We shortly describe the proof idea. The main problem is that we cannot w.l.o.g. restrict
the substitutions in a chain such that they do not contain tuple symbols [17]. Thus, we
may have to apply rules in DecF] also below the root, in order to simulate a reduction
tiσi →∗R si+1σi+1. The trick is to introduce a second set of labels and labeling functions for
the tuple symbols. The new labeling functions label all tuple symbols by the same element.

Christian Sternagel and René Thiemann 15

Hence, no decreasing rules are required for them (w.r.t. the second set of labeling functions)
and on all other symbols the labeling functions coincide.

Afterwards, we use a combined labeling of terms: The root of the term is labeled
according to the original function, and below the root it is labeled w.r.t. the second labeling
function. In this way no decreasing rules for the tuple symbols have to be applied below
the root and moreover, on all terms in the DP problem, the original and the combined
labeling produce the same result. Thus, we can transform a given (P,R)-chain into a
(lab(P) ∪ DecF] , lab(R) ∪ DecF)-chain. Theorem 5.2 easily follows.

To summarize, we discussed some problems which occurred when trying to certify existing
proofs which are mainly due to optimizations of the basic semantic labeling theorems. Of
course, we also need to check the model condition, whether the orders are weakly monotone
when using quasi-orders, etc. Whereas the general theorems about soundness of semantic
labeling have been formalized for arbitrary carriers, for the certification we currently only
support finite carriers. Then checking the required conditions is performed via enumerating
all possible assignments.

In total, our formalization of pure semantic labeling consists of 3300 lines of Isabelle,
where roughly half of it is about semantic labeling on generic algebras, and the other half
contains executable functions for the certifier using algebras over finite carriers and soundness
proofs for these functions. Moreover, the theory about the semantic labeling framework with
extended termination techniques, extended DP problems, etc., consists of another 1000 lines.

6 Experiments

To test the impact of our formalization we ran AProVE on the TPDB (version 8.0), considering
all 2795 TRSs. We used two different strategies which are similar to the strategy CERT that
was used during the 2010 termination competition in the certified termination category: –SL
is like CERT but with semantic labeling removed, and +SL is like CERT including all three
variants of semantic labeling that are supported by AProVE (root-labeling, semantic-labeling
on finite carriers with models and quasi-models).

We performed all our experiments on a machine with two 2.8GHz Quad-Core Intel Xeon
processors and 6GB of main memory. The following results where obtained using a 60
seconds timeout.

–SL +SL total

termination proofs 1137 1207 1227
nontermination proofs 225 218 227
total time (in minutes) 1186 1219
certification time (in minutes) 1 3

CeTA (version 1.17) certified all but two proofs. On one TRS, both –SL and +SL delivered
a faulty proof, caused by a bug in the LPO output of AProVE (which will be fixed soonish).

The results show that by using semantic labeling we obtain 90 new certified termination
proofs. This is an increase of nearly 8%. Note that +SL has not solved all TRSs where –SL
was successful. This is due to timing issues in the strategy.

7 Conclusion

During our formalization of semantic labeling we have detected that unlabeling is unsound
when using the current semantics of termination problems. We solved the problem by

RTA’11

16 Modular and Certified Semantic Labeling and Unlabeling

extending termination problems and the DP framework such that recursive labeling and
unlabeling are supported, as well as all other existing termination techniques. This framework
forms the semantic basis of our certifier CeTA which now fully supports semantic labeling.

Acknowledgments We thank Christian Kuknat and Carsten Fuhs for their support in
providing certifiable proofs with semantic labeling generated by AProVE.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Comput.

Sci., 236(1-2):133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1999.
3 F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR, a Coq

library on rewriting and termination. In WST, pages 69–73, 2006.
4 É. Contejean, A. Paskevich, X. Urbain, P. Courtieu, O. Pons, and J. Forest. A3PAT, an

approach for certified automated termination proofs. In PEPM, pages 63–72, 2010.
5 J. Endrullis. Jambox. Available at http://joerg.endrullis.de.
6 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.
7 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify

termination of left-linear term rewriting systems. Inf. Comput., 205(4):512–534, 2007.
8 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving

dependency pairs. J. Autom. Reasoning, 37(3):155–203, 2006.
9 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of

higher-order functions. In FroCoS, LNAI 3717, pages 216–231, 2005.
10 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs

in the dependency pair framework. In IJCAR, LNAI 4130, pages 281–286, 2006.
11 N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination. In LPAR, LNAI

5330, pages 667–681, 2008.
12 D. Hofbauer and J. Waldmann. Match-bounds for relative termination. In WST, 2010.
13 A. Koprowski. TPA: Termination proved automatically. In RTA, LNCS 4098, 2006.
14 M. Korp and A. Middeldorp. Match-bounds revisited. Inf. Comput., 207(11):1259–1283,

2009.
15 T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. LNCS 2283. Springer, 2002.
16 C. Sternagel and A. Middeldorp. Root-labeling. In RTA, LNCS 5117, pages 336–350, 2008.
17 C. Sternagel and R. Thiemann. Signature extensions preserve termination. In CSL, LNCS

6247, pages 514–528, 2010.
18 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs,

LNCS 5674, pages 452–468, 2009.
19 H. Zantema. Termination of term rewriting by semantic labelling. Fundam. Inform.,

24(1-2):89–105, 1995.
20 H. Zantema. Termination of string rewriting proved automatically. J. Autom. Reasoning,

34(2):105–139, 2005.

http://joerg.endrullis.de

	Introduction
	Preliminaries
	Term Rewriting
	Semantic Labeling

	Modular Semantic Labeling and Unlabeling
	Dependency Pair Framework
	Problems in Certification
	Experiments
	Conclusion

