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Abstract
We describe how to utilize redundant rewrite rules, i.e., rules that can be simulated by other
rules, when (dis)proving confluence of term rewrite systems. We demonstrate how automatic
confluence provers benefit from the addition as well as the removal of redundant rules. Due to
their simplicity, our transformations were easy to formalize in a proof assistant and are thus
amenable to certification. Experimental results show the surprising gain in power.
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1 Introduction

Confluence of first-order term rewrite systems (TRSs) is an important property which is
intimately connected to uniqueness of normal forms, and hence to determinism of programs. In
recent years there has been tremendous progress in establishing confluence or non-confluence
of TRSs automatically, with a number of tools being developed, like ACP [3], Saigawa [11,14],
CoLL1 and our own tool, CSI [29]. There is an annual confluence competition2 where these
tools compete. To increase the trust in the proofs produced by these tools, a certifier like
CeTA [27] can be used to verify the proofs. (CeTA is a certifier for termination and confluence
proofs for TRSs. Other certifiers already exist for termination proofs, notably Rainbow [5] and
CiME3 [6].) The approach taken by CeTA is to formalize various termination and confluence
criteria in an interactive theorem prover, together with executable functions that can be
used to verify that the criteria are applied correctly. From this formalization, the certifier is
automatically extracted, which produces highly trustworthy code. An alternative approach is
to convert certificates produced by automated termination (or confluence) tools into proofs
that can be replayed in a theorem prover, thereby formally proving the property for the
original TRS.

In this paper we present a remarkably simple technique based on the removal and addition
of redundant rules, which can significantly enhance the power of automatic confluence provers.
The technique is also straightforward to formalize, making it amenable to certification.

I Example 1. Consider the TRS R consisting of the two rewrite rules

f(f(x))→ x f(x)→ f(f(x))

∗ This work is supported by FWF (Austrian Science Fund) project P27528.
1 http://www.jaist.ac.jp/~s1310032/coll/
2 http://coco.nue.riec.tohoku.ac.jp/

© Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 257–268

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.257
http://www.jaist.ac.jp/~s1310032/coll/
http://coco.nue.riec.tohoku.ac.jp/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


258 Improving Confluence Analysis by Redundant Rules

The two non-trivial critical pairs

f(f(f(x)))←o→ x x←o→ f(f(f(x)))

are obviously joinable

f(f(f(x)))→R f(x)→R f(f(x))→R x

but not by a multistep (cf. Definition 3). Consequently, the result of van Oostrom [19] on
development-closed critical pairs does not apply. After adding the rewrite rule f(x)→ x to
R, we obtain four new critical pairs

f(x)←o→ x x←o→ f(x) f(f(x))←o→ x x←o→ f(f(x))

The new rule ensures that fn(x) −→○ x for all n > 0 and thus confluence of the extension
follows from the main result of [19], cf. Example 4 in Section 2. Since the new rule can be
simulated by the original rules (i.e., f(x)→R f(f(x))→R x), also R is confluent.

None of the aforementioned tools can prove confluence of the TRS R of Example 1, but
every tool can prove confluence of the extended TRS. Below we explain how such extensions
can be found automatically.

The next example shows that also proving non-confluence may become easier after adding
rules.
I Example 2. Consider the TRS R consisting of the eight rewrite rules

f(g(a), g(y))→ b f(x, y)→ f(x, g(y)) g(x)→ x a→ g(a)
f(h(x), h(a))→ c f(x, y)→ f(h(x), y) h(x)→ x a→ h(a)

All critical pairs are deeply3 joinable but R is not confluent [7]. Two of the critical pairs are

b←o→ f(h(g(a)), g(x)) c←o→ f(h(x), g(h(a)))

After adding them as rules

f(h(g(a)), g(x))→ b f(h(x), g(h(a)))→ c

new critical pairs are obtained, one of which is

b←o→ c

Since b and c are different normal forms, the extension is obviously non-confluent. Since
the new rules can be simulated by the original rules, also R is non-confluent. Of the tools
mentioned, ACP shows confluence by first deriving the rule g(a)→ a (which can be simulated
by existing rules), which then gives rise to a critical pair that extends to a non-joinable peak:

b← f(g(a), g(a))→ f(g(a), a)→∗ c

Saigawa also shows non-confluence but exceeded the 60s time limit in our experiments; it
considers critical pairs of the (extended) TRS R∪R−1, which includes the rule g(a)→ a.
Hence Saigawa finds the same non-joinable peak as ACP. However, CoLL and CSI (without
the techniques from this paper) fail.

The remainder of the paper is structured as follows. In Section 3, we describe the theory
underlying the addition and removal of rules, and Section 4 is devoted to its integration
into CeTA. In Section 5 we briefly sketch our implementation in CSI and present experimental
results. Related work is presented in Section 6 before we conclude in Section 7.

3 A critical pair s←o→ t is deeply joinable if u ↓ v for any two reducts u of s and v of t. The example
defeats any non-confluence check based on proving non-joinability of peaks starting from critical peaks.
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2 Preliminaries

Throughout the paper we assume familiarity with term rewriting; for an introduction to
this topic see [4, 25]. We use s and t to denote terms. Given a position p in a term t, t|p
is the subterm at position p of t, and t[s]p is the result of replacing the subterm t|p by the
term s in t. The letter σ represents a substitution (mapping variables to terms) and tσ is
the result of applying σ to the term t. For a binary relation R on terms we write σ R σ′ if
σ(x) R σ′(x) for all variables x. Term rewrite systems R, S consist of rewrite rules `→ r,
and induce rewrite relations (e.g., →R). The relations ←, ←→, →∗ denote the inverse, the
symmetric closure, and the reflexive, transitive closure of →, respectively. Joinability ↓ and
meetability ↑ are defined by ↓ =→∗ · ∗← and ↑ = ∗← ·→∗. Consider two rules `→ r and
`′ → r′ ∈ R that have been renamed such that ` and `′ have no variables in common, and a
non-variable position p of `. If p is the root position, then we demand that `→ r and `′ → r′

are not variants of each other. If `′ and `|p unify with most general unifier σ, then we obtain
a critical peak `[r′]pσ ← `σ → rσ. We write `[r′]pσ ←o→ rσ for the corresponding critical
pair. We also write s←no→ t to denote overlays, i.e., critical pairs that stem from overlaps
at the root position, and s←·o→ t for the other critical pairs.

I Definition 3. For a TRS R, multisteps −→○ R are defined inductively by
x −→○ R x if x is a variable,
`σ −→○ R rσ′ if `→ r ∈ R and σ, σ′ are substitutions with σ −→○ R σ′, and
f(s1, . . . , sn) −→○ R f(t1, . . . , tn) if f is a function symbol of arity n and si −→○ R ti for
1 6 i 6 n.

The TRS R is development-closed if every critical pair s←o→ t satisfies s −→○ t. It is almost
development-closed if s −→○ · ∗← t for all overlays s ←no→ t and s −→○ t for all other critical
pairs s←·o→ t.

Van Oostrom [19] has shown that (almost) development closed TRSs are confluent,
extending results by Huet [13] and Toyama [28].

I Example 4. We revisit Example 1 and show confluence of R ∪ {f(x) → x}. First we
establish that fn(x) −→○ x by induction on n. The claim is trivially true for n = 0. Given
fn−1(x) −→○ x, we can take substitutions σ and σ′ that map x to fn−1(x) and x, respectively,
and obtain f(x)σ −→○ xσ′, i.e., fn(x) −→○ x. For each of the critical pairs s ←o→ t, we have
either s −→○ t or s ←no→ t and s ←−◦ t (which implies s −→○ · ∗← t). Therefore the TRS is
almost development closed and thus confluent.

3 Theory

In this section we present the easy theory behind the use of redundant rules for proving
confluence. For adding such rules we use the following folklore result.

I Lemma 5. If `→∗R r for every rule `→ r from S then →∗R =→∗R∪S .

Proof. The inclusion →∗R ⊆ →∗R∪S is obvious. For the reverse direction it suffices to show
that s→∗R t whenever s→S t. The latter ensures the existence of a position p in s, a rewrite
rule `→ r in S, and a substitution σ such that s|p = `σ and t = s[rσ]p. We obtain `→∗R r

from the assumption of the lemma. Closure (of →∗R) under contexts and substitutions yields
the desired s→∗R t. J

I Corollary 6. If ` →∗R r for every rule ` → r from S then R is confluent if and only if
R∪ S is confluent.

RTA 2015
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Proof. We obtain →∗R = →∗R∪S from the preceding lemma. Hence also ↓R = ↓R∪S and
↑R = ↑R∪S . Therefore

↑R ⊆ ↓R ⇐⇒ ↑R∪S ⊆ ↓R∪S J

I Definition 7. A rule `→ r ∈ R is redundant if `→∗R\{`→r} r.

By Corollary 6, if `→ r ∈ R is redundant, then R is confluent if and only if R\{`→ r} is
confluent. In other words, removing a redundant rule does not affect confluence of a TRS. For
removing rules while reflecting4 confluence (or adding rules while reflecting non-confluence) it
suffices that the left- and right-hand side are convertible with respect to the remaining rules.

I Lemma 8. If `←→∗R r for every rule `→ r from S then ←→∗R∪S =←→∗R.

Proof. The inclusion ←→∗R ⊆ ←→∗R∪S is obvious. For the reverse direction it suffices to show
that s←→∗R t whenever s→S t. The latter ensures the existence of a position p in s, a rewrite
rule `→ r in S, and a substitution σ such that s|p = `σ and t = s[rσ]p. We obtain `←→∗R r

from the assumption of the lemma. Closure (of ←→∗R) under contexts and substitutions yields
the desired s←→∗R t. J

I Corollary 9. If R is confluent and ` ←→∗R r for every rule ` → r from S then R ∪ S is
confluent.

Proof. From the preceding lemma and the confluence of R we obtain

←→∗R∪S = ←→∗R ⊆ ↓R ⊆ ↓R∪S

Hence R∪ S is confluent. J

I Example 10. Consider the TRS from [10, Example 2] consisting of the five rewrite rules

hd(x : y)→ x inc(x : y)→ s(x) : inc(y) nats→ 0 : inc(nats)
tl(x : y)→ y inc(tl(nats))→ tl(inc(nats))

While this system can be shown to be confluent using decreasing diagrams, simply removing
the last rule would make confluence obvious, since the remaining four rules constitute an
orthogonal TRS. And indeed, because of the following joining sequences, the last rule is
superfluous and can be dropped:

inc(tl(nats))→ inc(tl(0 : inc(nats)))→ inc(inc(nats))
tl(inc(nats))→ tl(inc(0 : inc(nats)))→ tl(s(0) : inc(inc(nats)))→ inc(inc(nats))

I Remark. Some other examples from [10] can be dealt with in a similar fashion: In
[10, Example 1] the first rule is joinable using the other rules, and the remaining system
is orthogonal. The same argument (with a different joining conversion) applies to [10,
Example 5].

Corollary 9 can also be beneficial when dealing with non-left-linear systems, as demon-
strated by the following example.

4 We are interested in transformations that reflect (rather than preserve) confluence, because our goal is
automation, and it is natural to work from the conclusion for finding (non-)confluence proofs.
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I Example 11. Consider the TRS from [24] consisting of the four rewrite rules

f(x, x)→ f(g(x), g(x)) f(x, y)→ f(h(x), h(y))
g(x)→ p(x) h(x)→ p(x)

Because of the conversion

f(x, x)→ f(h(x), h(x))→ f(p(x), g(x))→ f(p(x), p(x))← f(g(x), p(x))← f(g(x), g(x))

we can remove the first rule. Since the resulting TRS is orthogonal and the removed rule is
convertible using the other rules, also the original TRS is confluent.

It can also be beneficial to both add and remove rules. In particular adding a redundant
rule can help with removing other, problematic rules, as shown in the following example.

I Example 12. Consider the TRS consisting of the three rewrite rules5

f(x, y)→ f(g(x), g(x)) f(x, x)→ a g(x)→ x

After adding the rule f(x, y)→ a, which is justified since f(x, y)→ f(g(x), g(x))→ a, we can
remove the first two original rules, due to the following conversions:

f(x, y)→ a← f(g(x), g(x)) f(x, x)→ a

The resulting TRS is orthogonal and hence confluent. Since the added rule can be simulated
by the original rules, and the removed rules are convertible using the new rule, also the
original TRS is confluent.

While adding (or removing) rules using Corollary 6 is always safe in the sense that we
cannot lose confluence, it is easy to see that the reverse direction of Corollary 9 does not
hold in general. That is, removing convertible rules can make a confluent TRS non-confluent
as for example witnessed by the two TRSs R = {a→ b, a→ c} and S = {b→ a}. Clearly
R is not confluent, S ∪R is confluent, and b←→∗R a.

We give one more example, showing that using removal of redundant rules can considerably
speed up finding a confluence proof.

I Example 13. Consider the TRS consisting of the following two rules:

f(x)→ g(x, f(x)) f(f(f(f(x))))→ f(f(f(g(x, f(x)))))

This TRS is confluent by the simultaneous critical pair criterion of Okui [18]6 which is
implemented by ACP. Alas, there are 58 simultaneous critical pairs and indeed ACP, which im-
plements Okui’s criterion, does not terminate in five minutes. While 58 looks small, the simul-
taneous critical pairs become quite big. For example, with t = g(f3(g(x, f(x))), f4(g(x, f(x)))),
one of the simultaneous critical pairs is

f3(g(f(g(f(t), f(f(t))), f(f(g(f(t), f(f(t))))))))←−◦o→ f5(g(f3(x), f4(x)))

and testing joinability using development steps is very expensive. In general, if one takes
the rules f(x) → g(x, f(x)) and fn(f(x)) → fn(g(x, f(x))), then the number and size of the
simultaneous critical pair will grow exponentially in n. However, Corollary 9 is applicable—
the second rule can be simulated by the first rule in one step—and showing confluence of the
first rule is trivial.

5 http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/rtatlca14/examples/u1.trs
6 Note that the given TRS is feebly orthogonal [21]. The key observation here is that any simultaneous

critical pair arises from a peak of a development step and a plain rewrite step. By the orthogonalization
procedure from [21], we can obtain an equivalent peak of two orthogonal development steps, which is
joinable by two development steps, thus satisfying Okui’s criterion.
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4 Formalization and Certification

Due to the ever increasing interest in automatic analysis of term rewrite systems in the
recent years, it is of great importance whether a proof, automatically generated by some
tool, is indeed correct. The complexity of the generated proofs makes checking correctness,
i.e., certification, impractical for humans. Thus there is a strong interest in automated
certification of proofs generated by e.g. confluence or termination tools. This led to the
common approach of using proof assistants for certification.

Our technique is particularly well suited for certification for the following reasons. First,
since the theory we use is elementary, formalizing it in a proof assistant is entirely straight-
forward. Moreover the generated proofs, while simple in nature, can become very large,
which makes checking them infeasible by hand, but easy for a machine. Finally, as demon-
strated in Section 5, the existing certifiable confluence techniques heavily benefit from our
transformations.

As certifier we use CeTA [27], originally developed as a tool for certifying termination
proofs which have to be provided as certificates in CPF (certification problem format) [23].
Given a certificate CeTA will either answer CERTIFIED, or return a detailed error message why
the proof was REJECTED. Its correctness is formally proven as part of IsaFoR, the Isabelle
Formalization of Rewriting. IsaFoR contains executable “check”-functions for each formalized
proof technique together with formal proofs that whenever such a check succeeds, the
technique was indeed applied correctly. Isabelle’s code-generation facility is used to obtain a
trusted Haskell program from these check functions: the certifier CeTA.7

Since 2012 CeTA supports checking (non-)confluence certificates [16,26]. Checkable criteria
that ensure confluence are:

Knuth and Bendix’ criterion [15],
(weak) orthogonality [22],
Huet’s result on strongly closed critical pairs [13], and
the rule labeling heuristic for decreasing diagrams [17,20].

For non-confluence CeTA can check that, given derivations s →∗ t1 and s →∗ t2, t1 and t2
cannot be joined. Here the supported justifications are:

testing that t1 and t2 are distinct normal forms,
testing that tcap(t1σ) and tcap(t2σ) are not unifiable [29],
usable rules, discrimination pairs, argument filters, and interpretations [1], and
reachability analysis using tree automata [8].

To add support for our transformations to CeTA we formalized the results from Section 3
in Isabelle and integrated them into IsaFoR. The theory Redundant_Rules.thy contains the
theoretical results, whose formalization, directly following the paper proof, requires a mere
100 lines of Isabelle, stressing the simplicity of the transformations.

We extended CPF for representing proofs using addition and removal of redundant
rules and implemented dedicated check functions in the theory Redundant_Rules_Impl.thy,
enabling CeTA to inspect, i.e., certify such (non-)confluence proofs. A certificate for (non-)con-
fluence of a TRS R by an application of the redundant rules transformation consists of three
parts:

the modified TRS R′,
a certificate for the (non-)confluence of R′, and

7 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta/.

http://cl-informatik.uibk.ac.at/software/ceta/
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a justification for redundancy of the added and removed rules. Here for the rules that
were added, i.e., all `→ r in S = R′ \ R, we simply require a bound on the length of the
derivations showing `→∗R r.8 For the deleted rules in a non-confluence certificate, i.e.,
all `→ r in S = R \R′, the same bound is used for `→∗R′ r. For a confluence proof one
can either give explicit conversions `←→∗R′ r or rely on the bound again, which then has
to ensure ` ↓R′ r.

Implementing check functions for such a certificate is then straightforward. We simply
compute S \ R and R \ S and use the given bound and conversions to ensure redundancy.

Whereas for certification we only need to check that the modified rules really are redundant,
the question of how to automatically find suitable rules for addition and deletion is more
intricate. In the next section we discuss and evaluate our implementation of three possible
approaches in the confluence prover CSI.

5 Implementation and Experiments

CSI features a powerful strategy language [29], which allows to combine confluence techniques
in a modular and flexible manner, making it easy to test different strategies that exploit
redundant rules.

We tested our implementation on the Cops database9 using the following three strategies
to add and remove rules.
(js) Our first strategy is to add (minimal) joining sequences of critical pairs as rules, i.e.,

in Corollary 6 choose S ⊆ {s → u, t → u | s←o→ t with s→∗R u and t→∗R u}. The
underlying idea here is that critical peaks become joinable in a single step, which is
advantageous for other confluence criteria, for example rule labeling [20].

(rhs) The second strategy for obtaining redundant rules to add, is to rewrite right-hand
sides of rules, i.e., in Corollary 6 set S = {`→ t | `→ r ∈ R and r →R t}. (This idea has
already been used for termination by Zantema [30].) Again the motivation is to produce
shorter joining sequences for critical pairs, facilitating the use of other confluence criteria.

(del) For removing rules we search for rules whose left- and right-hand sides are joinable,
i.e., in Corollary 9 set S = {` → r | ` ↓R r}. This decision is motivated by simplicity
of implementation and the fact that for confluent TRSs, joinability and convertibility
coincide. Removing rules can benefit confluence proofs by eliminating critical pairs. Since
our strategy here is a simple greedy one that removes as many rules as possible, we also
lose confluence in some cases.

In the case of adding rules we also discard rules that can be simulated by other rules in a
single step. Without this refinement, the gain in power would become smaller, and even
disappear for CSI’s full strategy. We also implemented and tested three other strategies,
which did not yield any additional proofs.

Inspired by Example 1 we tried to add rules specifically for making rewrite systems
development closed. That is, we used S = {s→ t | s←o→ t with s→∗R t and s 6−→○ R t}
in Corollary 6. All examples gained by this strategy can also be handled by (js) or (rhs).
To help with systems containing AC-like rules we tried to add inverted reversible rules,
by setting S = {r → ` | `→ r ∈ R with r →∗R `} in Corollary 6. Again we gained no
additional proofs compared to (js) and (rhs).

8 This bound is necessary, because in Isabelle all functions have to be total and an unbounded search
might not terminate.

9 All TRS problems (276 at the time of writing) from http://coco.nue.riec.tohoku.ac.jp/cops/.
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Table 1 Experimental Results (X = certified).

CSI CSIjs CSIrhs CSIdel CSIall

yes 155 156 159 163 166
no 47 48 47 47 48
maybe 74 72 70 66 62

XCSI XCSIjs XCSIrhs XCSIdel XCSIall

yes 71 86 73 78 104
no 47 48 47 47 48
maybe 158 142 156 151 124

ACP

Saigawa CSIall

CoLL

13

21

5 3

4
1

43

4

4

4

3

29

1032

2

98

Figure 1 Overlap Between Solved Examples.

When removing rules we also tried to search for conversions that are not valleys, by
using rules in the reverse direction when searching for a join. More precisely, we tried
S = {` → r | ` ↓R∪R−1 r} in Corollary 9. However, this variation only lost examples
compared to (del).

The results are shown in Table 1.10 The experiments were performed on a 48 core 2.2 GHz
Opteron 6174 server with 256 GB RAM. We performed two sets of benchmarks, based on
CSI’s full and certifiable strategies, respectively. For the full strategy, adding joining sequences
of critical pairs (js) or rewriting right-hand sides (rhs) show very limited effect, gaining 2
and 4 proofs, respectively. Removing rules (del) is the most effective technique and gains 10
systems while losing 2 other ones. With all techniques combined, 12 new systems can be
shown (non-)confluent. Interestingly, the picture for the certifiable strategy is a bit different.
Here, (rhs) gains 2 proofs, (js) gains 16 systems and (del) gains 17 proofs while losing 10.
Remarkably, in all of those 17 proofs the TRS becomes orthogonal after removing redundant
rules, which emphasizes that our transformations can considerably simplify confluence proofs.
In total, 34 new systems are shown (non-)confluent.

In Table 2, we compare CSI 0.5,to ACP 0.50, CoLL 1.1, and Saigawa 1.7. Figure 1 shows
the examples solved by the four provers in relation to each other.

10Detailed results are available at http://cl-informatik.uibk.ac.at/software/csi/rr-rta2015/.

http://cl-informatik.uibk.ac.at/software/csi/rr-rta2015/
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Table 2 Comparison of Confluence Provers.

ACP CoLL CSIall Saigawa

yes 186 141 166 128
no 52 16 48 25
maybe 38 119 62 123

6 Related Work

Our work draws a lot of inspiration from existing literature. One starting point is [21], where
van Oostrom introduces the notion of feeble orthogonality. A TRS is feebly orthogonal if the
critical peaks arising from its non-redundant∗ rules are trivial or contain a trivial step (that
rewrites a term to itself); a rule is redundant∗ if it can be simulated by another rule in a
single step. Clearly our notion of redundancy generalizes redundancy∗.

The most important prior work is [2]. In this paper, Aoto and Toyama describe an
automated confluence criterion (which has been implemented in ACP) based on decomposing
TRSs into a reversible part P and a terminating part S. In order to help applicability of
their criterion, they introduce a procedure based on the inference rules

replace 〈S ∪ {`→ r},P〉
〈S ∪ {`→ r′},P〉

r ←→∗P r′ add 〈S,P〉
〈S ∪ {`→ r},P〉

`←→∗P · →∗S r

The key is that because P is reversible, ←→∗P and →∗P coincide, and therefore confluence
of S ∪ P is not affected by applying these inference rules. This very same idea underlies
Lemma 5, which establishes reduction equivalence, and thus Corollary 6. Note that no rule
removal is performed in [2].

There is a second connection between our work and [2] that seems noteworthy. Given
a reversible P, every rule from P−1 can be simulated by a sequence of P-steps. Therefore,
confluence of S ∪ P and S ∪ P ∪ P−1 coincide by Corollary 6. Using this observation, one
could decompose the confluence criteria of [2] into two steps, one that replaces P by P ∪P−1,
and a respective underlying confluence criterion that does not make use of reversibility, but
instead demands that P is symmetric, i.e., P−1 ⊆ P.

The idea of showing confluence by removing rules whose sides are convertible has already
been used in the literature, e.g. [12, Example 11], which is a variation of Example 10.

Other works of interest are [9, 30], where Gramlich and Zantema apply a similar idea to
Corollary 6 to termination: If some additional requirements are met, then termination of
R∪ {`→ r} is equivalent to termination of R∪ {`→ r′} where r →R r′ by a non-erasing
rule. This is true for non-overlapping TRSs [9, Theorem 4], or when the rule used in the
r →R r′ step is locally confluent by itself, left-linear, and furthermore it doesn’t overlap with
any rules from R∪ {`→ r} except itself [30, Theorem 4].

7 Conclusion

In this work we demonstrated how a very simple technique, namely adding and removing
redundant rules, can boost the power of automated confluence provers. It is easy to
implement and we believe that also confluence tools other than CSI could benefit from such
transformations, not only increasing their power, but also simplifying the generated proofs.
Moreover the technique is well-suited for certification, resulting in more trustworthy proofs.
In particular we could significantly increase the number of certifiable confluence proofs in our

RTA 2015
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experiments—by almost 50%. Interestingly we observed that all 17 of the systems gained by
X(del) become orthogonal by removing redundant rules. This might be due to the fact that
when designing example TRSs for new techniques, one often works by systematically making
existing criteria non-applicable and removing rules can undo this effort.

As future work we plan to investigate more elaborate strategies for finding useful redundant
rules, both for addition and removal (where the candidates are limited, but performing the
transformation might lose confluence). Here one direction to explore might be the use of
machine learning techniques to devise such strategies automatically.

Acknowledgments. The comments by the anonymous reviewers helped to improve the
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