2.77/1.76	YES
2.77/1.79	
2.77/1.79	Problem:
2.77/1.79	fstsplit(0(), x) -> nil()
2.77/1.79	fstsplit(s(n), nil()) -> nil()
2.77/1.79	fstsplit(s(n), cons(h, t)) -> cons(h, fstsplit(n, t))
2.77/1.79	sndsplit(0(), x) -> x
2.77/1.79	sndsplit(s(n), nil()) -> nil()
2.77/1.79	sndsplit(s(n), cons(h, t)) -> sndsplit(n, t)
2.77/1.79	empty(nil()) -> true()
2.77/1.79	empty(cons(h, t)) -> false()
2.77/1.79	leq(0(), m) -> true()
2.77/1.79	leq(s(n), 0()) -> false()
2.77/1.79	leq(s(n), s(m)) -> leq(n, m)
2.77/1.79	length(nil()) -> 0()
2.77/1.79	length(cons(h, t)) -> s(length(t))
2.77/1.79	app(nil(), x) -> x
2.77/1.79	app(cons(h, t), x) -> cons(h, app(t, x))
2.77/1.79	map_f(pid, nil()) -> nil()
2.77/1.79	map_f(pid, cons(h, t)) -> app(f(pid, h), map_f(pid, t))
2.77/1.79	process(store, m) -> process(app(map_f(self(), nil()), sndsplit(m, store)), m) <= leq(m, length(store)) = true(), empty(fstsplit(m, store)) = false()
2.77/1.79	process(store, m) -> process(sndsplit(m, app(map_f(self(), nil()), store)), m) <= leq(m, length(store)) = false(), empty(fstsplit(m, app(map_f(self(), nil()), store))) = false()
2.77/1.79	
2.77/1.79	Proof:
2.77/1.79	This system is confluent.
2.77/1.79	By \cite{GNG13}, Theorem 9.
2.77/1.79	This system is of type 3 or smaller.
2.77/1.79	This system is deterministic.
2.77/1.79	This system is weakly left-linear.
2.77/1.79	System R transformed to optimized U(R).
2.77/1.79	This system is orthogonal.
2.77/1.79	
5.06/2.53	EOF