0.00/0.81	YES
0.00/0.81	
0.00/0.81	Problem:
0.00/0.81	lt(x, 0()) -> false()
0.00/0.81	lt(0(), s(x)) -> true()
0.00/0.81	lt(s(x), s(y)) -> lt(x, y)
0.00/0.81	m(0(), s(y)) -> 0()
0.00/0.81	m(x, 0()) -> x
0.00/0.81	m(s(x), s(y)) -> m(x, y)
0.00/0.81	div(0(), s(x)) -> pair(0(), 0())
0.00/0.81	div(s(x), s(y)) -> pair(0(), s(x)) <= lt(x, y) = true()
0.00/0.81	div(s(x), s(y)) -> pair(s(q), r) <= lt(x, y) = false(), div(m(x, y), s(y)) = pair(q, r)
0.00/0.81	
0.00/0.81	Proof:
0.00/0.81	This system is confluent.
0.00/0.81	By \cite{GNG13}, Theorem 9.
0.00/0.81	This system is of type 3 or smaller.
0.00/0.81	This system is deterministic.
0.00/0.81	This system is weakly left-linear.
0.00/0.81	System R transformed to optimized U(R).
0.00/0.81	This system is orthogonal.
0.00/0.81	
3.10/1.29	EOF