0.00/0.77	YES
0.00/0.77	
0.00/0.77	Problem:
0.00/0.77	a() -> c()
0.00/0.77	b() -> c()
0.00/0.77	f(x) -> x <= a() = x
0.00/0.77	
0.00/0.77	Proof:
0.00/0.77	This system is confluent.
0.00/0.77	By \cite{ALS94}, Theorem 4.1.
0.00/0.77	This system is of type 3 or smaller.
0.00/0.77	This system is strongly deterministic.
0.00/0.77	All 0 critical pairs are joinable.
0.00/0.77	This system is quasi-decreasing.
0.00/0.77	By \cite{A14}, Theorem 11.5.9.
0.00/0.77	This system is of type 3 or smaller.
0.00/0.77	This system is deterministic.
0.00/0.77	System R transformed to V(R) + Emb.
0.00/0.77	This system is terminating.
0.00/0.77	Call external tool:
0.00/0.77	./ttt2.sh
0.00/0.77	Input:
0.00/0.77	  a() -> c()
0.00/0.77	  b() -> c()
0.00/0.77	  f(x) -> x
0.00/0.77	  f(x) -> a()
0.00/0.77	  f(x) -> x
0.00/0.77	
0.00/0.77	 Polynomial Interpretation Processor:
0.00/0.77	  dimension: 1
0.00/0.77	  interpretation:
0.00/0.77	   [f](x0) = 4x0 + 3x0x0 + 4,
0.00/0.77	   
0.00/0.77	   [b] = 1,
0.00/0.77	   
0.00/0.77	   [c] = 0,
0.00/0.77	   
0.00/0.77	   [a] = 2
0.00/0.77	  orientation:
0.00/0.77	   a() = 2 >= 0 = c()
0.00/0.77	   
0.00/0.77	   b() = 1 >= 0 = c()
0.00/0.77	   
0.00/0.77	   f(x) = 4x + 3x*x + 4 >= x = x
0.00/0.77	   
0.00/0.77	   f(x) = 4x + 3x*x + 4 >= 2 = a()
0.00/0.77	  problem:
0.00/0.77	   
0.00/0.77	  Qed
0.00/0.77	
0.00/0.80	EOF