25.38/7.84	YES
25.38/7.84	
25.38/7.84	Problem:
25.38/7.84	lte(0(), n) -> true()
25.38/7.84	lte(s(m), 0()) -> false()
25.38/7.84	lte(s(m), s(n)) -> lte(m, n)
25.38/7.84	insert(nil(), m) -> cons(m, nil())
25.38/7.84	insert(cons(n, l), m) -> cons(m, cons(n, l)) <= lte(m, n) = true()
25.38/7.84	insert(cons(n, l), m) -> cons(n, insert(l, m)) <= lte(m, n) = false()
25.38/7.84	ordered(nil()) -> true()
25.38/7.84	ordered(cons(m, nil())) -> true()
25.38/7.84	ordered(cons(m, cons(n, l))) -> ordered(cons(n, l)) <= lte(m, n) = true()
25.38/7.84	ordered(cons(m, cons(n, l))) -> false() <= lte(m, n) = false()
25.38/7.84	
25.38/7.84	Proof:
25.38/7.84	This system is confluent.
25.38/7.84	By \cite{SMI95}, Corollary 4.7 or 5.3.
25.38/7.84	This system is oriented.
25.38/7.84	This system is of type 3 or smaller.
25.38/7.84	This system is right-stable.
25.38/7.84	This system is properly oriented.
25.38/7.84	This is an overlay system.
25.38/7.84	This system is left-linear.
25.38/7.84	All 4 critical pairs are trivial or infeasible.
25.38/7.84	CP: cons(x', cons(y', z')) = cons(y', insert(z', x')) <= lte(x', y') = false(), lte(x', y') = true():
25.38/7.84	This critical pair is infeasible.
25.38/7.84	This critical pair is conditional.
25.38/7.84	This critical pair has some non-trivial conditions.
25.38/7.84	This system is of type 3 or smaller.
25.38/7.84	This system is deterministic.
25.38/7.84	This system is quasi-decreasing.
25.38/7.84	By \cite{A14}, Theorem 11.5.9.
25.38/7.84	This system is of type 3 or smaller.
25.38/7.84	This system is deterministic.
25.38/7.84	System R transformed to V(R) + Emb.
25.38/7.84	This system is terminating.
25.38/7.84	Call external tool:
25.38/7.84	./ttt2.sh
25.38/7.84	Input:
25.38/7.84	  lte(0(), n) -> true()
25.38/7.84	  lte(s(m), 0()) -> false()
25.38/7.84	  lte(s(m), s(n)) -> lte(m, n)
25.38/7.84	  insert(nil(), m) -> cons(m, nil())
25.38/7.84	  insert(cons(n, l), m) -> cons(m, cons(n, l))
25.38/7.84	  insert(cons(n, l), m) -> lte(m, n)
25.38/7.84	  insert(cons(n, l), m) -> cons(n, insert(l, m))
25.38/7.84	  ordered(nil()) -> true()
25.38/7.84	  ordered(cons(m, nil())) -> true()
25.38/7.84	  ordered(cons(m, cons(n, l))) -> ordered(cons(n, l))
25.38/7.84	  ordered(cons(m, cons(n, l))) -> lte(m, n)
25.38/7.84	  ordered(cons(m, cons(n, l))) -> false()
25.38/7.84	  s(x) -> x
25.38/7.84	  insert(x, y) -> x
25.38/7.84	  insert(x, y) -> y
25.38/7.84	  lte(x, y) -> x
25.38/7.84	  lte(x, y) -> y
25.38/7.84	  ordered(x) -> x
25.38/7.84	  cons(x, y) -> x
25.38/7.84	  cons(x, y) -> y
25.38/7.84	
25.38/7.84	 Matrix Interpretation Processor: dim=1
25.38/7.84	  
25.38/7.84	  interpretation:
25.38/7.84	   [ordered](x0) = 4x0 + 2,
25.38/7.84	   
25.38/7.84	   [cons](x0, x1) = 2x0 + x1 + 2,
25.38/7.84	   
25.38/7.84	   [insert](x0, x1) = 2x0 + 2x1 + 6,
25.38/7.84	   
25.38/7.84	   [nil] = 3,
25.38/7.84	   
25.38/7.84	   [false] = 0,
25.38/7.84	   
25.38/7.84	   [s](x0) = 2x0 + 1,
25.38/7.84	   
25.38/7.84	   [true] = 0,
25.38/7.84	   
25.38/7.84	   [lte](x0, x1) = 2x0 + 4x1 + 1,
25.38/7.84	   
25.38/7.84	   [0] = 7
25.38/7.84	  orientation:
25.38/7.84	   lte(0(),n) = 4n + 15 >= 0 = true()
25.38/7.84	   
25.38/7.84	   lte(s(m),0()) = 4m + 31 >= 0 = false()
25.38/7.84	   
25.38/7.84	   lte(s(m),s(n)) = 4m + 8n + 7 >= 2m + 4n + 1 = lte(m,n)
25.38/7.84	   
25.38/7.84	   insert(nil(),m) = 2m + 12 >= 2m + 5 = cons(m,nil())
25.38/7.84	   
25.38/7.84	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= l + 2m + 2n + 4 = cons(m,cons(n,l))
25.38/7.84	   
25.38/7.84	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2m + 4n + 1 = lte(m,n)
25.38/7.84	   
25.38/7.84	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2l + 2m + 2n + 8 = cons(n,insert(l,m))
25.38/7.84	   
25.38/7.84	   ordered(nil()) = 14 >= 0 = true()
25.38/7.84	   
25.38/7.84	   ordered(cons(m,nil())) = 8m + 22 >= 0 = true()
25.38/7.84	   
25.38/7.84	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 4l + 8n + 10 = ordered(cons(n,l))
25.38/7.84	   
25.38/7.84	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 2m + 4n + 1 = lte(m,n)
25.38/7.84	   
25.38/7.84	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 0 = false()
25.38/7.84	   
25.38/7.84	   s(x) = 2x + 1 >= x = x
25.38/7.84	   
25.38/7.85	   insert(x,y) = 2x + 2y + 6 >= x = x
25.38/7.85	   
25.38/7.85	   insert(x,y) = 2x + 2y + 6 >= y = y
25.38/7.85	   
25.38/7.85	   lte(x,y) = 2x + 4y + 1 >= x = x
25.38/7.85	   
25.38/7.85	   lte(x,y) = 2x + 4y + 1 >= y = y
25.38/7.85	   
25.38/7.85	   ordered(x) = 4x + 2 >= x = x
25.38/7.85	   
25.38/7.85	   cons(x,y) = 2x + y + 2 >= x = x
25.38/7.85	   
25.38/7.85	   cons(x,y) = 2x + y + 2 >= y = y
25.38/7.85	  problem:
25.38/7.85	   
25.38/7.85	  Qed
25.38/7.85	This critical pair is unfeasible.
25.38/7.85	CP: cons(x', insert(y', z')) = cons(z', cons(x', y')) <= lte(z', x') = true(), lte(z', x') = false():
25.38/7.85	This critical pair is infeasible.
25.38/7.85	This critical pair is conditional.
25.38/7.85	This critical pair has some non-trivial conditions.
25.38/7.85	This system is of type 3 or smaller.
25.38/7.85	This system is deterministic.
25.38/7.85	This system is quasi-decreasing.
25.38/7.85	By \cite{A14}, Theorem 11.5.9.
25.38/7.85	This system is of type 3 or smaller.
25.38/7.85	This system is deterministic.
25.38/7.85	System R transformed to V(R) + Emb.
25.38/7.85	This system is terminating.
25.38/7.85	Call external tool:
25.38/7.85	./ttt2.sh
25.38/7.85	Input:
25.38/7.85	  lte(0(), n) -> true()
25.38/7.85	  lte(s(m), 0()) -> false()
25.38/7.85	  lte(s(m), s(n)) -> lte(m, n)
25.38/7.85	  insert(nil(), m) -> cons(m, nil())
25.38/7.85	  insert(cons(n, l), m) -> cons(m, cons(n, l))
25.38/7.85	  insert(cons(n, l), m) -> lte(m, n)
25.38/7.85	  insert(cons(n, l), m) -> cons(n, insert(l, m))
25.38/7.85	  ordered(nil()) -> true()
25.38/7.85	  ordered(cons(m, nil())) -> true()
25.38/7.85	  ordered(cons(m, cons(n, l))) -> ordered(cons(n, l))
25.38/7.85	  ordered(cons(m, cons(n, l))) -> lte(m, n)
25.38/7.85	  ordered(cons(m, cons(n, l))) -> false()
25.38/7.85	  s(x) -> x
25.38/7.85	  insert(x, y) -> x
25.38/7.85	  insert(x, y) -> y
25.38/7.85	  lte(x, y) -> x
25.38/7.85	  lte(x, y) -> y
25.38/7.85	  ordered(x) -> x
25.38/7.85	  cons(x, y) -> x
25.38/7.85	  cons(x, y) -> y
25.38/7.85	
25.38/7.85	 Matrix Interpretation Processor: dim=1
25.38/7.85	  
25.38/7.85	  interpretation:
25.38/7.85	   [ordered](x0) = 4x0 + 2,
25.38/7.85	   
25.38/7.85	   [cons](x0, x1) = 2x0 + x1 + 2,
25.38/7.85	   
25.38/7.85	   [insert](x0, x1) = 2x0 + 2x1 + 6,
25.38/7.85	   
25.38/7.85	   [nil] = 3,
25.38/7.85	   
25.38/7.85	   [false] = 0,
25.38/7.85	   
25.38/7.85	   [s](x0) = 2x0 + 1,
25.38/7.85	   
25.38/7.85	   [true] = 0,
25.38/7.85	   
25.38/7.85	   [lte](x0, x1) = 2x0 + 4x1 + 1,
25.38/7.85	   
25.38/7.85	   [0] = 7
25.38/7.85	  orientation:
25.38/7.85	   lte(0(),n) = 4n + 15 >= 0 = true()
25.38/7.85	   
25.38/7.85	   lte(s(m),0()) = 4m + 31 >= 0 = false()
25.38/7.85	   
25.38/7.85	   lte(s(m),s(n)) = 4m + 8n + 7 >= 2m + 4n + 1 = lte(m,n)
25.38/7.85	   
25.38/7.85	   insert(nil(),m) = 2m + 12 >= 2m + 5 = cons(m,nil())
25.38/7.85	   
25.38/7.85	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= l + 2m + 2n + 4 = cons(m,cons(n,l))
25.38/7.85	   
25.38/7.85	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2m + 4n + 1 = lte(m,n)
25.38/7.85	   
25.38/7.85	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2l + 2m + 2n + 8 = cons(n,insert(l,m))
25.38/7.85	   
25.38/7.85	   ordered(nil()) = 14 >= 0 = true()
25.38/7.85	   
25.38/7.85	   ordered(cons(m,nil())) = 8m + 22 >= 0 = true()
25.38/7.85	   
25.38/7.85	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 4l + 8n + 10 = ordered(cons(n,l))
25.38/7.85	   
25.38/7.85	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 2m + 4n + 1 = lte(m,n)
25.38/7.85	   
25.38/7.85	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 0 = false()
25.38/7.85	   
25.38/7.85	   s(x) = 2x + 1 >= x = x
25.38/7.85	   
25.38/7.85	   insert(x,y) = 2x + 2y + 6 >= x = x
25.38/7.85	   
25.38/7.85	   insert(x,y) = 2x + 2y + 6 >= y = y
25.38/7.85	   
25.38/7.85	   lte(x,y) = 2x + 4y + 1 >= x = x
25.38/7.85	   
25.38/7.85	   lte(x,y) = 2x + 4y + 1 >= y = y
25.38/7.85	   
25.38/7.85	   ordered(x) = 4x + 2 >= x = x
25.38/7.85	   
25.38/7.85	   cons(x,y) = 2x + y + 2 >= x = x
25.38/7.85	   
25.38/7.85	   cons(x,y) = 2x + y + 2 >= y = y
25.38/7.85	  problem:
25.38/7.85	   
25.38/7.85	  Qed
25.38/7.85	This critical pair is unfeasible.
25.38/7.85	CP: ordered(cons(x', y')) = false() <= lte(z', x') = false(), lte(z', x') = true():
25.38/7.85	This critical pair is infeasible.
25.38/7.85	This critical pair is conditional.
25.38/7.85	This critical pair has some non-trivial conditions.
25.38/7.85	This system is of type 3 or smaller.
25.38/7.85	This system is deterministic.
25.38/7.85	This system is quasi-decreasing.
25.38/7.85	By \cite{A14}, Theorem 11.5.9.
25.38/7.85	This system is of type 3 or smaller.
25.38/7.85	This system is deterministic.
25.38/7.85	System R transformed to V(R) + Emb.
25.38/7.85	This system is terminating.
25.38/7.85	Call external tool:
25.38/7.85	./ttt2.sh
25.38/7.85	Input:
25.38/7.85	  lte(0(), n) -> true()
25.38/7.85	  lte(s(m), 0()) -> false()
25.38/7.85	  lte(s(m), s(n)) -> lte(m, n)
25.38/7.85	  insert(nil(), m) -> cons(m, nil())
25.38/7.85	  insert(cons(n, l), m) -> cons(m, cons(n, l))
25.38/7.85	  insert(cons(n, l), m) -> lte(m, n)
25.38/7.85	  insert(cons(n, l), m) -> cons(n, insert(l, m))
25.38/7.85	  ordered(nil()) -> true()
25.38/7.85	  ordered(cons(m, nil())) -> true()
25.38/7.85	  ordered(cons(m, cons(n, l))) -> ordered(cons(n, l))
25.38/7.85	  ordered(cons(m, cons(n, l))) -> lte(m, n)
25.38/7.85	  ordered(cons(m, cons(n, l))) -> false()
25.38/7.85	  s(x) -> x
25.38/7.85	  insert(x, y) -> x
25.38/7.85	  insert(x, y) -> y
25.38/7.85	  lte(x, y) -> x
25.38/7.85	  lte(x, y) -> y
25.38/7.85	  ordered(x) -> x
25.38/7.85	  cons(x, y) -> x
25.38/7.85	  cons(x, y) -> y
25.38/7.85	
25.38/7.85	 Matrix Interpretation Processor: dim=1
25.38/7.88	  
25.38/7.88	  interpretation:
25.38/7.88	   [ordered](x0) = 4x0 + 2,
25.38/7.88	   
25.38/7.88	   [cons](x0, x1) = 2x0 + x1 + 2,
25.38/7.88	   
25.38/7.88	   [insert](x0, x1) = 2x0 + 2x1 + 6,
25.38/7.88	   
25.38/7.88	   [nil] = 3,
25.38/7.88	   
25.38/7.88	   [false] = 0,
25.38/7.88	   
25.38/7.88	   [s](x0) = 2x0 + 1,
25.38/7.88	   
25.38/7.88	   [true] = 0,
25.38/7.88	   
25.38/7.88	   [lte](x0, x1) = 2x0 + 4x1 + 1,
25.38/7.88	   
25.38/7.88	   [0] = 7
25.38/7.88	  orientation:
25.38/7.88	   lte(0(),n) = 4n + 15 >= 0 = true()
25.38/7.88	   
25.38/7.88	   lte(s(m),0()) = 4m + 31 >= 0 = false()
25.38/7.88	   
25.38/7.88	   lte(s(m),s(n)) = 4m + 8n + 7 >= 2m + 4n + 1 = lte(m,n)
25.38/7.88	   
25.38/7.88	   insert(nil(),m) = 2m + 12 >= 2m + 5 = cons(m,nil())
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= l + 2m + 2n + 4 = cons(m,cons(n,l))
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2m + 4n + 1 = lte(m,n)
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2l + 2m + 2n + 8 = cons(n,insert(l,m))
25.38/7.88	   
25.38/7.88	   ordered(nil()) = 14 >= 0 = true()
25.38/7.88	   
25.38/7.88	   ordered(cons(m,nil())) = 8m + 22 >= 0 = true()
25.38/7.88	   
25.38/7.88	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 4l + 8n + 10 = ordered(cons(n,l))
25.38/7.88	   
25.38/7.88	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 2m + 4n + 1 = lte(m,n)
25.38/7.88	   
25.38/7.88	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 0 = false()
25.38/7.88	   
25.38/7.88	   s(x) = 2x + 1 >= x = x
25.38/7.88	   
25.38/7.88	   insert(x,y) = 2x + 2y + 6 >= x = x
25.38/7.88	   
25.38/7.88	   insert(x,y) = 2x + 2y + 6 >= y = y
25.38/7.88	   
25.38/7.88	   lte(x,y) = 2x + 4y + 1 >= x = x
25.38/7.88	   
25.38/7.88	   lte(x,y) = 2x + 4y + 1 >= y = y
25.38/7.88	   
25.38/7.88	   ordered(x) = 4x + 2 >= x = x
25.38/7.88	   
25.38/7.88	   cons(x,y) = 2x + y + 2 >= x = x
25.38/7.88	   
25.38/7.88	   cons(x,y) = 2x + y + 2 >= y = y
25.38/7.88	  problem:
25.38/7.88	   
25.38/7.88	  Qed
25.38/7.88	This critical pair is unfeasible.
25.38/7.88	CP: false() = ordered(cons(x', y')) <= lte(z', x') = true(), lte(z', x') = false():
25.38/7.88	This critical pair is infeasible.
25.38/7.88	This critical pair is conditional.
25.38/7.88	This critical pair has some non-trivial conditions.
25.38/7.88	This system is of type 3 or smaller.
25.38/7.88	This system is deterministic.
25.38/7.88	This system is quasi-decreasing.
25.38/7.88	By \cite{A14}, Theorem 11.5.9.
25.38/7.88	This system is of type 3 or smaller.
25.38/7.88	This system is deterministic.
25.38/7.88	System R transformed to V(R) + Emb.
25.38/7.88	This system is terminating.
25.38/7.88	Call external tool:
25.38/7.88	./ttt2.sh
25.38/7.88	Input:
25.38/7.88	  lte(0(), n) -> true()
25.38/7.88	  lte(s(m), 0()) -> false()
25.38/7.88	  lte(s(m), s(n)) -> lte(m, n)
25.38/7.88	  insert(nil(), m) -> cons(m, nil())
25.38/7.88	  insert(cons(n, l), m) -> cons(m, cons(n, l))
25.38/7.88	  insert(cons(n, l), m) -> lte(m, n)
25.38/7.88	  insert(cons(n, l), m) -> cons(n, insert(l, m))
25.38/7.88	  ordered(nil()) -> true()
25.38/7.88	  ordered(cons(m, nil())) -> true()
25.38/7.88	  ordered(cons(m, cons(n, l))) -> ordered(cons(n, l))
25.38/7.88	  ordered(cons(m, cons(n, l))) -> lte(m, n)
25.38/7.88	  ordered(cons(m, cons(n, l))) -> false()
25.38/7.88	  s(x) -> x
25.38/7.88	  insert(x, y) -> x
25.38/7.88	  insert(x, y) -> y
25.38/7.88	  lte(x, y) -> x
25.38/7.88	  lte(x, y) -> y
25.38/7.88	  ordered(x) -> x
25.38/7.88	  cons(x, y) -> x
25.38/7.88	  cons(x, y) -> y
25.38/7.88	
25.38/7.88	 Matrix Interpretation Processor: dim=1
25.38/7.88	  
25.38/7.88	  interpretation:
25.38/7.88	   [ordered](x0) = 4x0 + 2,
25.38/7.88	   
25.38/7.88	   [cons](x0, x1) = 2x0 + x1 + 2,
25.38/7.88	   
25.38/7.88	   [insert](x0, x1) = 2x0 + 2x1 + 6,
25.38/7.88	   
25.38/7.88	   [nil] = 3,
25.38/7.88	   
25.38/7.88	   [false] = 0,
25.38/7.88	   
25.38/7.88	   [s](x0) = 2x0 + 1,
25.38/7.88	   
25.38/7.88	   [true] = 0,
25.38/7.88	   
25.38/7.88	   [lte](x0, x1) = 2x0 + 4x1 + 1,
25.38/7.88	   
25.38/7.88	   [0] = 7
25.38/7.88	  orientation:
25.38/7.88	   lte(0(),n) = 4n + 15 >= 0 = true()
25.38/7.88	   
25.38/7.88	   lte(s(m),0()) = 4m + 31 >= 0 = false()
25.38/7.88	   
25.38/7.88	   lte(s(m),s(n)) = 4m + 8n + 7 >= 2m + 4n + 1 = lte(m,n)
25.38/7.88	   
25.38/7.88	   insert(nil(),m) = 2m + 12 >= 2m + 5 = cons(m,nil())
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= l + 2m + 2n + 4 = cons(m,cons(n,l))
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2m + 4n + 1 = lte(m,n)
25.38/7.88	   
25.38/7.88	   insert(cons(n,l),m) = 2l + 2m + 4n + 10 >= 2l + 2m + 2n + 8 = cons(n,insert(l,m))
25.38/7.88	   
25.38/7.88	   ordered(nil()) = 14 >= 0 = true()
25.38/7.90	   
25.38/7.90	   ordered(cons(m,nil())) = 8m + 22 >= 0 = true()
25.38/7.90	   
25.38/7.90	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 4l + 8n + 10 = ordered(cons(n,l))
25.38/7.90	   
25.38/7.90	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 2m + 4n + 1 = lte(m,n)
25.38/7.90	   
25.38/7.90	   ordered(cons(m,cons(n,l))) = 4l + 8m + 8n + 18 >= 0 = false()
25.38/7.90	   
25.38/7.90	   s(x) = 2x + 1 >= x = x
25.38/7.90	   
25.38/7.90	   insert(x,y) = 2x + 2y + 6 >= x = x
25.38/7.90	   
25.38/7.90	   insert(x,y) = 2x + 2y + 6 >= y = y
25.38/7.90	   
25.38/7.90	   lte(x,y) = 2x + 4y + 1 >= x = x
25.38/7.90	   
25.38/7.90	   lte(x,y) = 2x + 4y + 1 >= y = y
25.38/7.90	   
25.38/7.90	   ordered(x) = 4x + 2 >= x = x
25.38/7.90	   
25.38/7.90	   cons(x,y) = 2x + y + 2 >= x = x
25.38/7.90	   
25.38/7.90	   cons(x,y) = 2x + y + 2 >= y = y
25.38/7.90	  problem:
25.38/7.90	   
25.38/7.90	  Qed
25.38/7.90	This critical pair is unfeasible.
25.38/7.90	
25.68/8.28	EOF