YES Proof: This system is quasi-decreasing. By \cite{O02}, p. 214, Proposition 7.2.50. This system is of type 3 or smaller. This system is deterministic. System R transformed to U(R). Call external tool: ttt2 - trs 30 Input: sub(z, 0) -> z ?1(x, z, y) -> x sub(s(z), s(y)) -> ?1(sub(z, y), z, y) DP Processor: DPs: sub#(s(z),s(y)) -> sub#(z,y) sub#(s(z),s(y)) -> ?1#(sub(z,y),z,y) TRS: sub(z,0()) -> z ?1(x,z,y) -> x sub(s(z),s(y)) -> ?1(sub(z,y),z,y) TDG Processor: DPs: sub#(s(z),s(y)) -> sub#(z,y) sub#(s(z),s(y)) -> ?1#(sub(z,y),z,y) TRS: sub(z,0()) -> z ?1(x,z,y) -> x sub(s(z),s(y)) -> ?1(sub(z,y),z,y) graph: sub#(s(z),s(y)) -> sub#(z,y) -> sub#(s(z),s(y)) -> ?1#(sub(z,y),z,y) sub#(s(z),s(y)) -> sub#(z,y) -> sub#(s(z),s(y)) -> sub#(z,y) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: sub#(s(z),s(y)) -> sub#(z,y) TRS: sub(z,0()) -> z ?1(x,z,y) -> x sub(s(z),s(y)) -> ?1(sub(z,y),z,y) Subterm Criterion Processor: simple projection: pi(sub#) = 0 problem: DPs: TRS: sub(z,0()) -> z ?1(x,z,y) -> x sub(s(z),s(y)) -> ?1(sub(z,y),z,y) Qed