YES Proof: This system is quasi-decreasing. By \cite{A14}, Theorem 11.5.9. This system is of type 3 or smaller. This system is deterministic. System R transformed to V(R) + Emb. Call external tool: ttt2 - trs 30 Input: lte(0, 0) -> tt lte(s(x), 0) -> ff lte(s(x), s(y)) -> lte(x, y) lte(x, s(y)) -> tt lte(x, s(y)) -> lte(x, y) s(x) -> x lte(x, y) -> x lte(x, y) -> y DP Processor: DPs: lte#(s(x),s(y)) -> lte#(x,y) lte#(x,s(y)) -> lte#(x,y) TRS: lte(0(),0()) -> tt() lte(s(x),0()) -> ff() lte(s(x),s(y)) -> lte(x,y) lte(x,s(y)) -> tt() lte(x,s(y)) -> lte(x,y) s(x) -> x lte(x,y) -> x lte(x,y) -> y Subterm Criterion Processor: simple projection: pi(lte#) = 0 problem: DPs: lte#(x,s(y)) -> lte#(x,y) TRS: lte(0(),0()) -> tt() lte(s(x),0()) -> ff() lte(s(x),s(y)) -> lte(x,y) lte(x,s(y)) -> tt() lte(x,s(y)) -> lte(x,y) s(x) -> x lte(x,y) -> x lte(x,y) -> y Subterm Criterion Processor: simple projection: pi(lte#) = 1 problem: DPs: TRS: lte(0(),0()) -> tt() lte(s(x),0()) -> ff() lte(s(x),s(y)) -> lte(x,y) lte(x,s(y)) -> tt() lte(x,s(y)) -> lte(x,y) s(x) -> x lte(x,y) -> x lte(x,y) -> y Qed