YES

Proof:
This system is quasi-decreasing.
By \cite{A14}, Theorem 11.5.9.
This system is of type 3 or smaller.
This system is deterministic.
System R transformed to V(R) + Emb.
Call external tool:
ttt2 - trs 30
Input:
  even(0) -> true
  even(s(x)) -> true
  even(s(x)) -> odd(x)
  odd(s(x)) -> true
  odd(s(x)) -> even(x)
  even(x) -> x
  s(x) -> x
  odd(x) -> x

 DP Processor:
  DPs:
   even#(s(x)) -> odd#(x)
   odd#(s(x)) -> even#(x)
  TRS:
   even(0()) -> true()
   even(s(x)) -> true()
   even(s(x)) -> odd(x)
   odd(s(x)) -> true()
   odd(s(x)) -> even(x)
   even(x) -> x
   s(x) -> x
   odd(x) -> x
  TDG Processor:
   DPs:
    even#(s(x)) -> odd#(x)
    odd#(s(x)) -> even#(x)
   TRS:
    even(0()) -> true()
    even(s(x)) -> true()
    even(s(x)) -> odd(x)
    odd(s(x)) -> true()
    odd(s(x)) -> even(x)
    even(x) -> x
    s(x) -> x
    odd(x) -> x
   graph:
    odd#(s(x)) -> even#(x) -> even#(s(x)) -> odd#(x)
    even#(s(x)) -> odd#(x) -> odd#(s(x)) -> even#(x)
   Subterm Criterion Processor:
    simple projection:
     pi(even#) = 0
     pi(odd#) = 0
    problem:
     DPs:
      
     TRS:
      even(0()) -> true()
      even(s(x)) -> true()
      even(s(x)) -> odd(x)
      odd(s(x)) -> true()
      odd(s(x)) -> even(x)
      even(x) -> x
      s(x) -> x
      odd(x) -> x
    Qed