YES Proof: This system is quasi-decreasing. By \cite{A14}, Theorem 11.5.9. This system is of type 3 or smaller. This system is deterministic. System R transformed to V(R) + Emb. Call external tool: ttt2 - trs 30 Input: a -> c a -> d b -> c b -> d s(c) -> t(k) s(c) -> t(l) g(x, x) -> h(x, x) f(x) -> pair(x, s(x)) f(x) -> s(x) h(x, y) -> x h(x, y) -> y pair(x, y) -> x pair(x, y) -> y s(x) -> x g(x, y) -> x g(x, y) -> y t(x) -> x f(x) -> x DP Processor: DPs: s#(c()) -> t#(k()) s#(c()) -> t#(l()) g#(x,x) -> h#(x,x) f#(x) -> s#(x) f#(x) -> pair#(x,s(x)) TRS: a() -> c() a() -> d() b() -> c() b() -> d() s(c()) -> t(k()) s(c()) -> t(l()) g(x,x) -> h(x,x) f(x) -> pair(x,s(x)) f(x) -> s(x) h(x,y) -> x h(x,y) -> y pair(x,y) -> x pair(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x) -> x TDG Processor: DPs: s#(c()) -> t#(k()) s#(c()) -> t#(l()) g#(x,x) -> h#(x,x) f#(x) -> s#(x) f#(x) -> pair#(x,s(x)) TRS: a() -> c() a() -> d() b() -> c() b() -> d() s(c()) -> t(k()) s(c()) -> t(l()) g(x,x) -> h(x,x) f(x) -> pair(x,s(x)) f(x) -> s(x) h(x,y) -> x h(x,y) -> y pair(x,y) -> x pair(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x) -> x graph: f#(x) -> s#(x) -> s#(c()) -> t#(l()) f#(x) -> s#(x) -> s#(c()) -> t#(k()) SCC Processor: #sccs: 0 #rules: 0 #arcs: 2/25