YES Proof: This system is quasi-decreasing. By \cite{A14}, Theorem 11.5.9. This system is of type 3 or smaller. This system is deterministic. System R transformed to V(R) + Emb. Call external tool: ttt2 - trs 30 Input: a -> c a -> d b -> c b -> d s(k) -> t(a) s(l) -> t(a) g(x, x) -> h(x, x) f(x, y) -> y f(x, y) -> s(x) h(x, y) -> x h(x, y) -> y s(x) -> x g(x, y) -> x g(x, y) -> y t(x) -> x f(x, y) -> x f(x, y) -> y DP Processor: DPs: s#(k()) -> a#() s#(k()) -> t#(a()) s#(l()) -> a#() s#(l()) -> t#(a()) g#(x,x) -> h#(x,x) f#(x,y) -> s#(x) TRS: a() -> c() a() -> d() b() -> c() b() -> d() s(k()) -> t(a()) s(l()) -> t(a()) g(x,x) -> h(x,x) f(x,y) -> y f(x,y) -> s(x) h(x,y) -> x h(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x,y) -> x TDG Processor: DPs: s#(k()) -> a#() s#(k()) -> t#(a()) s#(l()) -> a#() s#(l()) -> t#(a()) g#(x,x) -> h#(x,x) f#(x,y) -> s#(x) TRS: a() -> c() a() -> d() b() -> c() b() -> d() s(k()) -> t(a()) s(l()) -> t(a()) g(x,x) -> h(x,x) f(x,y) -> y f(x,y) -> s(x) h(x,y) -> x h(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x,y) -> x graph: f#(x,y) -> s#(x) -> s#(l()) -> t#(a()) f#(x,y) -> s#(x) -> s#(l()) -> a#() f#(x,y) -> s#(x) -> s#(k()) -> t#(a()) f#(x,y) -> s#(x) -> s#(k()) -> a#() SCC Processor: #sccs: 0 #rules: 0 #arcs: 4/36