YES Proof: This system is quasi-decreasing. By \cite{A14}, Theorem 11.5.9. This system is of type 3 or smaller. This system is deterministic. System R transformed to V(R) + Emb. Call external tool: ttt2 - trs 30 Input: s(a) -> c s(b) -> c c -> t(k) c -> t(l) f(x) -> s(x) g(x, x) -> h(x, x) h(x, y) -> x h(x, y) -> y s(x) -> x g(x, y) -> x g(x, y) -> y t(x) -> x f(x) -> x DP Processor: DPs: s#(a()) -> c#() s#(b()) -> c#() c#() -> t#(k()) c#() -> t#(l()) f#(x) -> s#(x) g#(x,x) -> h#(x,x) TRS: s(a()) -> c() s(b()) -> c() c() -> t(k()) c() -> t(l()) f(x) -> s(x) g(x,x) -> h(x,x) h(x,y) -> x h(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x) -> x TDG Processor: DPs: s#(a()) -> c#() s#(b()) -> c#() c#() -> t#(k()) c#() -> t#(l()) f#(x) -> s#(x) g#(x,x) -> h#(x,x) TRS: s(a()) -> c() s(b()) -> c() c() -> t(k()) c() -> t(l()) f(x) -> s(x) g(x,x) -> h(x,x) h(x,y) -> x h(x,y) -> y s(x) -> x g(x,y) -> x g(x,y) -> y t(x) -> x f(x) -> x graph: f#(x) -> s#(x) -> s#(b()) -> c#() f#(x) -> s#(x) -> s#(a()) -> c#() s#(b()) -> c#() -> c#() -> t#(l()) s#(b()) -> c#() -> c#() -> t#(k()) s#(a()) -> c#() -> c#() -> t#(l()) s#(a()) -> c#() -> c#() -> t#(k()) SCC Processor: #sccs: 0 #rules: 0 #arcs: 6/36