YES
LCTRS
  Theories
    Core, Ints
  Signature
    a: Int
    c: Int -> Int
    f: Int -> Int
    g: Int -> Int
  Rules
    c(!x) -> f(!x) [and(<=(1, !x), <=(!x, 10))]
    c(!x) -> g(!x) [and(<=(1, !x), <=(!x, 10))]
    f(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    f(!x) -> a [and(<=(6, !x), <=(!x, 10))]
    g(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    g(!x) -> a [and(<=(6, !x), <=(!x, 10))]
* DPGraph approximation on the DP problem
  dependency pairs:
    {c#(!x) -> f#(!x) [and(<=(1, !x), <=(!x, 10))]
    , c#(!x) -> g#(!x) [and(<=(1, !x), <=(!x, 10))]}
  rules:
    {c(!x) -> f(!x) [and(<=(1, !x), <=(!x, 10))]
    , c(!x) -> g(!x) [and(<=(1, !x), <=(!x, 10))]
    , f(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    , f(!x) -> a [and(<=(6, !x), <=(!x, 10))]
    , g(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    , g(!x) -> a [and(<=(6, !x), <=(!x, 10))]}
resulting in the DP graph
  DPGraph with indexed dependency pairs
    {1: c#(!x) -> f#(!x) [and(<=(1, !x), <=(!x, 10))]
    , 2: c#(!x) -> g#(!x) [and(<=(1, !x), <=(!x, 10))]}
  and edges
    1 -> {}
    2 -> {}
with 0 SCC(s)
  

Elapsed Time:  15.31 ms