YES
LCTRS
  Theories
    Core, Ints
  Signature
    a: Int
    b: Int
    c: Int
    f: Int -> Int
    g: Int -> Int
  Rules
    c -> f(!x) [and(<=(1, !x), <=(!x, 10))]
    c -> g(!x) [and(<=(1, !x), <=(!x, 10))]
    f(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    f(!x) -> b [and(<=(6, !x), <=(!x, 10))]
    g(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    g(!x) -> b [and(<=(6, !x), <=(!x, 10))]
* DPGraph approximation on the DP problem
  dependency pairs:
    {c# -> f#(!x) [and(<=(1, !x), <=(!x, 10))]
    , c# -> g#(!x) [and(<=(1, !x), <=(!x, 10))]}
  rules:
    {c -> f(!x) [and(<=(1, !x), <=(!x, 10))]
    , c -> g(!x) [and(<=(1, !x), <=(!x, 10))]
    , f(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    , f(!x) -> b [and(<=(6, !x), <=(!x, 10))]
    , g(!x) -> a [and(<=(1, !x), <=(!x, 5))]
    , g(!x) -> b [and(<=(6, !x), <=(!x, 10))]}
resulting in the DP graph
  DPGraph with indexed dependency pairs
    {1: c# -> f#(!x) [and(<=(1, !x), <=(!x, 10))]
    , 2: c# -> g#(!x) [and(<=(1, !x), <=(!x, 10))]}
  and edges
    1 -> {}
    2 -> {}
with 0 SCC(s)
  

Elapsed Time:   8.02 ms